機率HW6 === **All answers are verified by textbooks.** ## 1. $C^6_3 \times (\frac{1}{6})^3 \times (\frac{5}{6})^3 = 0.002679184\times 20 =0.053583676$ ### A:++0.05358367++ ## 2. $p = C^{10}_k(0.45)^k(0.55)^{10-k}$ $p= 252 \times 0.018452812 \times 0.050328438 = 0.234032704 \ when \ k=5$ $p = 210 \times 0.04100625 \times 0.027680641 = 0.238366647 \ when \ k=4$ ### A:++k=4 , 0.238366647++ ## 3. $\Sigma^4_{i=1} C^8_{2i} (0.001)^{2i} (0.999)^{8-2i} = 0.000028$ ### A:++0.000028++ ## 4. $\lambda = 80 \times 0.025 = 2$ $1 - P(X=1) - P(X=0) = 1 - \frac{e^{-\lambda}\lambda^1}{1!} - \frac{e^{-\lambda}\lambda^0}{0!} = 1 - 3e^{-\lambda} = 0.594$ ### A:++0.594++ ## 5. $\lambda =\frac{3}{10} \times 35 = 10.5$(One chapter) $\frac{e^{-10.5} 10.5^{10}}{10!} = 0.124$ $0.124^2 = 0.0154$ ### A:++0.0154++ ## 6. $P(X=1)=P(X=3)$ $\frac{e^{-\lambda}\lambda^1}{1!} = \frac{e^{-\lambda}\lambda^3}{3!}$ $6e^{-\lambda}\lambda^1 = e^{-\lambda}\lambda^3$ $\ln(6e^{-\lambda}\lambda^1) = \ln(e^{-\lambda}\lambda^3)$ $\ln 6 + \ln e^{-\lambda} + \ln \lambda^1 =\ln e^{-\lambda} + \ln \lambda^3$ $\ln 6 -\lambda + \ln \lambda^1 = -\lambda + \ln \lambda^3$ $\ln 6 + \ln \lambda^1 = \ln \lambda^3$ $\ln 6 = \ln\lambda^2$ $\lambda^2=6$ $\lambda=\sqrt{6}$ $P(X=5) = \frac{e^{-\sqrt{6}} \sqrt{6}^5}{5!} = 0.063$ ### A:++0.063++ ## 7. $0.2 \times C^7_2 \times 0.2^2 \times 0.8^5 \simeq 0.055$ ### A:++0.055++ ## 8. Need at least n bulbs,so n-1 bulbs are defective for sure,so answer is $p^{n-1}$. ### A: $p^{n-1}$ ## 9. $P(X=i) = 0.15 \times C^{i+9}_9 0.15^9 0.85^i$ ## 10. The probability of 4 tagged trout among the second 50 trout caught is $P_n = \frac{C^{50}_4 C^{n-50}_{46}}{C^n_{50}}$ $\frac{P_n}{P_{n-1}} = \frac{(n-50)^2}{n(n-96)}$ If $P_n \ge P_{n-1}$ then $\frac{P_n}{P_{n-1}} \ge 1$ then $(n-50)^2 \ge n(n-96),$,so $n \le 625$. If $P_n \le P_{n-1}$ then $\frac{P_n}{P_{n-1}} \le 1$ then $(n-50)^2 \le n(n-96),$,so $n \ge 625$. $625 \le n \le 625$,so $n=625$ A:++625++