機率HW8 === ## 1. $15 \times \frac{1}{4}=3.75$ ### A: ++3.75++ ## 2. $\frac{\frac{2k}{3} - \frac{k}{3}}{k-0}=\frac{1}{3}$ ### A: ++$\frac{1}{3}$++ ## 3. Let $G$ and $g$ be the distribution and probability density functions of $Y$. $G(t) = P(Y \le t) = P(-\ln(1-X) \le t) = P(X \le 1-e^{-t})=\frac{(1-e^{-t})-0}{1-0}=1-e^{-t}$ $$ G(t)= \left\{ \begin{eqnarray} 0 \qquad t \le 0\\ 1-e^{-t} \qquad 0 \le t \le 1 \\ 1 \qquad t \ge 1 \\ \end{eqnarray} \right. $$ $g(t)=G^{\prime}(t)=e^{-t}$ $$ g(t)= \left\{ \begin{eqnarray} e^{-t} \qquad 0 \le t \le 1 \\ 0 \qquad otherwise \\ \end{eqnarray} \right. $$ ## 4. Because Z is a standard normal random variable,so the mean($\mu$) of Z is $0$,and the variance($\sigma^2$) of Z is $1$. Let $f(x)=P(x < Z < x+\alpha)=\int^{x+\alpha}_{x}\frac{1}{\sqrt{2\pi}}e^{\frac{-y^{2}}{2}}dy=\frac{1}{\sqrt{2\pi}}\int^{x+\alpha}_{x}e^{\frac{-y^{2}}{2}}dy$ The number x that maximizes $P(x < Z < x + α)$ appears when $f^{\prime}(x)=0$. By the fundamental theorem of calculus,$f^{\prime}(x)=\frac{1}{\sqrt{2\pi}}(e^{\frac{-(x+\alpha)^2}{2}} - e^{\frac{-x^2}{2}})$ $f^{\prime}(x)=0$ when $x=-\frac{\alpha}{2}$ ### A: $-\frac{\alpha}{2}$ ## 5. $\mu=67$ and $\sigma=8$. $P(X \ge 90) = 1-P(X < 90) = 1-\phi(\frac{90-67}{8})=1-\phi(2.875)\simeq1-0.998=0.002$ $P(80 \le X < 90)=\phi(\frac{90-67}{8})-\phi(\frac{80-67}{8})=\phi(2.875)-\phi(1.625)\simeq 0.998-0.9484=0.0496$ $P(70 \le X < 80)=\phi(\frac{80-67}{8})-\phi(\frac{70-67}{8})=\phi(1.625)-\phi(0.375)\simeq 0.9484-0.6480=0.3004$ $P(60 \le X < 70)=\phi(\frac{70-67}{8})-\phi(\frac{60-67}{8})=\phi(0.375)-\phi(−0.875)\simeq 0.6480-0.1894=0.4586$ $P(X<60)=\phi(\frac{60-67}{8})=0.1894$ $A(\ge 90)=0.2$% $B(80- 90)=4.96$% $C(70- 80)=30.04$% $D(60- 70)=45.86$% $F(<60)=18.84$% ## 6. $P(|X-\mu|>k\sigma)=P(X-\mu>k\sigma)+P(X-\mu<-k\sigma)=P(\frac{X-\mu}{\sigma}>k)+P(\frac{X-\mu}{\sigma}<-k) =(1-\phi(k))+(1-\phi(k))=2-2\phi(k)$ ## 7. Let $G$ and $g$ be the distribution and probability density functions of $Y$. $G(t)=P(Y \le t) = P(\sqrt{|X|} \le t)=P(|X|\le t^2)=P(-t^2\le X\le t^2),t \ge 0$ $G(t)=P(-t^2\le X\le t^2)=\phi(t^2)-\phi(-t^2)=\phi(t^2)-(1- \phi(t^2))=2\phi(t^2)-1=2\int^{t^2}_{-\infty}\frac{1}{\sqrt{2\pi}}e^{\frac{-x^2}{2}}dx-1$ $g(t)=G^{\prime}(t)=\frac{2}{\sqrt{2\pi}}e^{\frac{-x^2}{2}}|^{t^2}_{-\infty}=\frac{2}{\sqrt{2\pi}}e^{\frac{-t^4}{2}}$ ## 8. $P(|X-E(X)| \ge 2\sigma_{X})=P(|X-\frac{1}{\lambda}| \ge \frac{2}{\lambda})=P(X-\frac{1}{\lambda} \ge \frac{2}{\lambda})+P(X-\frac{1}{\lambda} \le -\frac{2}{\lambda})=P(X \ge \frac{3}{\lambda})+P(X \le -\frac{1}{\lambda})$ $P(X \ge \frac{3}{\lambda})+P(X \le -\frac{1}{\lambda})=[1-P(X \le \frac{3}{\lambda})]+P(X \le -\frac{1}{\lambda})=[1-(1-e^{-\lambda\frac{3}{\lambda}})]+(1-e^{\lambda\frac{1}{\lambda}})=e^-3\simeq0.049787$ ### A:++0.049787++ ## 9. $P(\lfloor X+1 \rfloor =n)=P(n \le X+1 \le n+1) =P(n-1 \le X \le n)= \int^{n}_{n-1}\lambda e^{-\lambda x}dx=-e^{-\lambda x}|^{n}_{n-1}$ $-e^{-\lambda x}|^{n}_{n-1}=-e^{-\lambda n}+e^{-\lambda (n-1)}=e^{-\lambda n}(e^{\lambda}-1)$