# VectorETL usage config.yml ```yaml! source: type: S3 aws_secret: ... ... destination: type: Qdrant host: ... ... embeddings: ... fetch_mode: full | incremental insert_mode: upsert | append | replace ``` ```bash! python main.py ``` Running above will cause: 0. Load config 1. Create SQLite db if not already exists. 1.1. Connect to Source and fetch files 2. Check SQLite db for previous runs. 4. DELETE FROM SQLite, return ids 5. INSERT INTO SQLite, return ids 6. Chunk files. 7. Generate embeddings. 8. DELETE FROM VectorDB using ids 9. UPSERT above to VectorDB using ids. 10. Update metadata to SQLite db. ## SQLite schema ```sql Table documents { id integer [primary key] document_path string file_updated_at timestamp file_metadata json created_at timestamp [default: `now()`] updated_at timestamp } Table document_chunks { id integer [primary key] document_id integer created_at timestamp [default: `now()`] updated_at timestamp } Ref: document_chunks.document_id > documents.id ```
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up