# Matrix Factorization For Recommendation How to recommend items based on rating data? ## Data Movielens-100k (Movie review) ![](https://i.imgur.com/8scDZgg.png) ![](https://i.imgur.com/PCysoiU.png) ## Matrix Factorization ![](https://i.imgur.com/FKgjimb.png) ![](https://i.imgur.com/c8jijzY.jpg) ## What is good baseline? ![](https://i.imgur.com/PCysoiU.png) 1. Uniform Random (0~5) 2. Global Means = (2+4+5+1+2+1+4)/7 = 3.28 3. Mean of means = (Mean + item_mean + person_mean)/3 = (3.28+ 5 + (1+4)/2)/3 = 3.6 ## Used library Tried method: PMF, PMF MCMC, SVD, SVD ++ 1. PMF MAP -> Bayesian approach 2. PMF MCMC -> Bayesian + Markov chain monte carlo approach 3. Funk SVD -> Netflix prize algorithm 3rd place 4. SVD ++ -> Funk SVD + implicit rating ### Error RMSE = (1/N * sum((Rating - predicted rating)**2)) **0.5 # Result ### Tutorial ### Data ![](https://i.imgur.com/RI188uI.png) ### predict ![](https://i.imgur.com/aiGeKiB.jpg) ### result ![](https://i.imgur.com/8Qf05du.png) ### Tried ml-100k latest ### Data ![](https://i.imgur.com/WF4iO63.png) ### predict ![](https://i.imgur.com/iAXVB5U.png) ![](https://i.imgur.com/35JGNXn.png) ![](https://i.imgur.com/PYkwdBV.png) ### ### Data ![](https://i.imgur.com/POvarUi.png) ### predict ![](https://i.imgur.com/v7tSsqG.jpg) ![](https://i.imgur.com/AJbaOQk.png) ![](https://i.imgur.com/iBvK2GZ.png)