# Reciprocal Recommendation ![](https://i.imgur.com/AXzeKdZ.png) ## Content-based filtering ![](https://i.imgur.com/8jj1y4n.png) ![](https://i.imgur.com/DRSCYHa.png) ![](https://i.imgur.com/ra45KAe.png) ![](https://i.imgur.com/rz2LCAs.png) ![](https://i.imgur.com/CXHVk9Z.png) ![](https://i.imgur.com/OuizT5n.png) ![](https://i.imgur.com/qI1YReH.png) ## Collaborative-based filtering ![](https://i.imgur.com/XmeLuOz.png) ![](https://i.imgur.com/AXzeKdZ.png) ![](https://i.imgur.com/zdi3WLG.png) ![](https://i.imgur.com/eWT9OGf.png) ![](https://i.imgur.com/EEcX8Bd.png) interest_similarity(M1, M2): =(Se(M1) intersect Se(M2) )/(Se(M1) Union Se(M2) ) =((F1,F2) intersect (F1,F3))/(F1,F2) Union (F1,F3) ) = F1/(F1,F2,F3) = 1/3 attractiveness_similarity(F3,F1): = (Re(F3) intersect Re(F1) )/(Re(F3) Union Re(F1) ) = ((M2,M3) intersect (M1,M2,M3)) / ((M2,M3) union (M1,M2,M3)) = (M2,M3) / (M1,M2,M3) = 2/3 Compat(M1, F3): = interest_similarity(M1, Re(F3)) = 1/2 *(interest_similarity(M1, M2) + interest_similarity(M1, M3)) = 1/2 * (1/3 + 2/4) = 10/24 = 5/12 Compat(F3, M1): = attractiveness_similarity(F3, Se(M1)) = 1/2 * (attractiveness_similarity(F3, F1) + attractiveness_similarity(F3, F2)) = 1/2 * (attractiveness_similarity(F3, F1) + attractiveness_similarity(F3, F2)) = 1/2 * (2/3 + 1/3) = 1/2 Reciprocal_score(M3,F1): ![](https://i.imgur.com/6czLDoM.png) = 2 / ((5/12)**-1 + (1/2)**-1) = 0.45 Compat(M4, F1): = interest_similarity(M4, Re(F1)) = 1/3 *(interest_similarity(M4, M1) + interest_similarity(M4, M2) + interest_similarity(M4, M3)) = 1/3 * (0 + 0 + 1/4) = 1/12 Compat(F1, M4): = attractiveness_similarity(F1, Se(M4)) = 1/1 * attractiveness_similarity(F1, F4) = 1/4 Reciprocal_score(M2,F1): ![](https://i.imgur.com/6czLDoM.png) = 2 / ((1/12)**-1 + (1/4)**-1) = 0.125