# INBO CODING CLUB 26 November, 2019 Welcome! ## Share your code snippet If you want to share your code snippet, copy paste your snippet within a section of three backticks (```): As an **example**: ``` library(tidyverse) ... ``` (*you can copy paste this example and add your code further down, but do not fill in your code in this section*) Your snippets: ### Challenge 1 Difference between `geom_bar` and `geom_histogram`. The first is for discrete variables, the second for continous variables, so yo uneed to group x- values in bins! In our case, if you put binwidth = 1, you get the same plot: ``` ggplot(data = surveys, mapping = aes(x = year)) + geom_bar() ggplot(data = surveys, mapping = aes(x = year)) + geom_histogram(binwidth = 1) ``` Patrik's snippet: ``` ## CHALLENGE 1 # Plot the hindfoot_length as function of weight using points ggplot(data = survey, aes(x = hindfoot_length, y=weight)) + geom_point() # Plot the weight as function of species using boxplot ggplot(data = survey, aes(x = species_id, y=weight)) + geom_boxplot() # Replace the box plot with a violin plot ggplot(data = survey, aes(x = species_id, y=weight)) + geom_violin() # How many surveys per gender? Show it as histogram ggplot(data = survey, aes(x = sex)) + geom_bar() # How many surveys per year? Show it as histogram ggplot(data = survey, aes(x = year)) + geom_bar() ``` ### Challenge 2 BELANGRIJK! Definieer in aesthetics (`aes()`) de variabelen die je wil visualiseren. Andere (vaste) properties, definieer je daarbuiten (bv. `alpha` met vaste waarde). Sander's snippet: ``` ggplot(data = survey, mapping = aes(x = log(weight), y = hindfoot_length, color = sex)) + geom_point(alpha = 0.5) + ylab("hindfoot length") + labs(title = "hindfoot length vs weight") + scale_colour_manual(values = c("F"="red", "M" = "yellow" ), labels = c("M"="Males", "F"="Females")) ``` Emma's snippet: ``` ggplot(data = survey, mapping = aes(x = year, fill = sex)) + geom_bar(position = "dodge", alpha = 0.5)+ labs(title = "Number of surveys per year", y = "number of surveys") + coord_flip() ``` Patrik's Snippet: ``` ggplot(data = survey, mapping = aes(x = log(weight), y = hindfoot_length, color = sex, alpha = 0.5)) + geom_point() + ylab("hindfoot length") + ggtitle ("hindfoot length vs weight") + scale_color_manual(values=c("F" = "red", "M"= "yellow")) ``` ### Challenge 3 Plot Emma: ``` library(plotly) p <- inat_bxl %>% mutate(year = as.factor(year)) %>% ggplot(aes(x = year, fill = species, width = 1)) + geom_bar(stat = "count", position = "dodge") ggplotly(p) ``` ## Plot Peter ``` inat_bxl_bin <- inat_bxl %>% group_by(year, species) %>% count() ggplot(data = inat_bxl_bin, mapping = aes( x = year, y = factor(species, levels = rev(levels(factor(species)))) )) + geom_point(aes(size = n)) + xlab("Year") + ylab("Species") ``` ## Plot Patrik ``` ggplot(data = inat_bxl, mapping = aes(x=year, fill = species)) + geom_bar(position = "fill") + facet_wrap(facets = vars(phylum)) ``` ## Plot Tanja ``` plot6 <- ggplot(data = inat_bxl) + geom_bar(aes(x = species, fill = as.factor(year)), stat = "count", position = "stack") + scale_fill_brewer(palette = "Spectral") + theme_classic() + theme(axis.text.x = element_text(angle = 45, face = "italic", hjust = 1), axis.line.x = element_blank(), axis.ticks.x = element_blank()) + labs(fill = "Year") plot6 ``` ``` inat_bxl_stat <- inat_bxl %>% group_by(year, species) %>% count() plot7 <- ggplot(data = inat_bxl_stat, aes(x = year, y = n)) + geom_line(colour = "red", size = 1) + facet_wrap(~ species) + ylab("count") + ggtitle("Evolution of observations by year") plot7 ``` ## Plot Marijke en Wim ``` ggplot(inat_bxl, aes( x = year)) + geom_bar(fill = "black") + facet_wrap(facet = vars(species)) + theme_bw() ``` ## Plot Andy ``` ggplot(data = inat_bxl, mapping = aes(x = year))+ geom_bar()+ facet_wrap(~species, scales = "free_y")+ xlab("Jaar") + ylab("Aantal")+ ggtitle("Aantallen per jaar en per soort") ` Which plot is your favourite? Emma Marijke/Wim * Peter * Tanja (plot 6) *