###### tags: `離散數學` :::info [回共筆首頁](https://hackmd.io/zrsmsRtEQ-OrnGslDxT0NQ) [回科目首頁](https://hackmd.io/OwMjUy0fRq2kEuCRiMwtkQ) ::: # 1. The Foundations: Logic and Proofs ## Section 1.1: Propositional Logic ### Propositions - A proposition is a declarative sentence that is **either true or fales**.有明確的真假值,才會說這個狀況是Proposition。 - Propositional Logic - Compound Propositions - Negation ($\neg$): NOT - Conjunction ($\land$): AND - Disjunction ($\lor$): OR - Implication ($\implies$): If p, then q. - Biconditional ($\iff$): p if and only if q. 若且唯若,兩個都成立,或是兩個都不成立 #### Implication Example: "If you get 100% on the final, then you will get an A." 假如你得到100 => 你就會拿A => T 假如你得到100 => 你沒有拿到A => F (在說謊) 假如你沒有得到100 => ?(不重要) => T (不管結果如何,因為前提沒有成立,都還是對的) :::danger - if p, then q - if p, q - q unless (not)p - q if p - q whenever p - q follows from p - p implies q - p only if q - q when p - p is sufficient for q - q is necessary for p - a necessary condition for p is q - a sufficient condition for q is p ::: ### Connectives ### Truth Tables ## Section 1.2: Applications of Propositional Logic ### Consistent - Definition: A list of propositions is **consustent** if it is possible to assign truth value to proposition varibales so that each **proposition is true**. - 跟Satisfiable不同的地方是,Consistent是全部狀況都為True,Satisfiable是只有一個為真。 ### Logic Puzzle - 一個城裡也兩種人,knights騎士,knaves惡棍,騎士只講實話,惡棍只講謊話 - 有A跟B兩人 - A說:「B是騎士」 - B說:「我跟A相反的人」 - A跟B是哪種人? ## Section 1.3: Propositional Equivalences - tautology => 永遠為真 - contradiction => 永遠為假,矛盾的情況 - contingency => 不是tautology,也不是contradiction,代表有真有假 ### Logically Equivalent :::danger - **$\neg\,$p $\lor$ q** $\equiv$ **p $\implies$ q** - **p $\implies$ q** $\equiv$ **$\neg\,$p $\lor$ q** ::: - De Morgan's Laws - Consistent => **多個**Compound Propositions,有一種情況可以滿足所有的Propositions都為True,則為Consistent。 - Satisfiability => **一個**Compound Proposition,有一種情況可以滿足Proposition為True,則為Satisfiable,反之為Unsatisfiable。 ### 要會證明 ## Section 1.4: Predicates and Quantifiers ### Predicate Logic - Variables: x,y,z - Predicates: P(x), M(x) - Quantifiers: Domain is denoted by ***U*** ### Example of Propositional Functions - Let "x+y=z" be denoted by R(x,y,z) and U(for all three varibles) be the intergers. Find these truth values: - R(2,-1,5) **Solution: F** - R(3,4,7) **Solution: T** - R(x,3,z) **Solution: Not a Proposition** ### Quantifers - To express the meaning of English words includiong all and some: - "All men are Mortal." - "Some cats do not have fun." - The two most important quantifiers are: - **Universal Quantifier**, "For all," symbol: $\forall$ - **Existential Quantifier**, "There exists," symbol: $\exists$ ### Precedence of Quantifiers - The quantifiers $\forall$ and $\exists$ have higher precedence than all the logic operators. ### Translating from English to Logic - "every student in this class has taken a course in Java." - $\forall$x(S(x) $\implies$ J(x)) - 如果有人不是這們課的學生,不管有沒有修過Java課,都不會影響原句的意思,因為只要S(x)成立,就看J(x)成立或不成立,才會影響 - "Some student in this class has taken a course in Java." - $\exists$x(S(x) $\land$ J(x)) ### De Morgan's Laws for Quantifiers - ### $\neg$$\forall$xP(x) $\equiv$ $\exists$x$\neg$P(x) - ### $\neg$$\exists$xP(x) $\equiv$ $\forall$x$\neg$P(x) ## Section 1.5: Nested Quantifiers ### Nested Quantifiers - "Every real number has an inverse" - $\forall x\exists y(x+y = 0)$ - Domains of x and y are the real numbers. ### Quantifications of Two Variables ![](https://i.imgur.com/FUqA1GN.png) ### Questions on Translation from English ![](https://i.imgur.com/ahVF7lv.jpg) ## Section 1.6: Rule of Inference 推論的法則 從前提推出結果 ### Valid Arguments 1. Propoaitional Logic Inference Rules 2. Predicate Logic Inference rules for propositional logic plus additional inference rules to handle variables and quantifiers. :::warning - Propositional Logic 有明確的真假值的敘述 - Prodicate Logic 並沒有馬上看的出來的真假值,但是可以比較好去描述一個subjectc或variable,當帶入特定的值,就會轉變成Propositional。也要去規範Predicate的定義域(Domain) ::: ### Arguments in Propositional Logic - 所有的proposition,除了最後一個以外,都叫做**premises**,最後一個叫做**conclusion** - The arugument is **valid** if the premises imply the conclusion. ### Modus Ponens ![](https://i.imgur.com/GJzpdMW.png =70%x) ### Modus Tollens ![](https://i.imgur.com/XjprXbO.png =70%x) ### Hypothetical Syllogism ![](https://i.imgur.com/NdKJhp9.png =70%x) ### Disjunctive Syllogism ![](https://i.imgur.com/wxjc6RF.png =70%x) ### Addition ![](https://i.imgur.com/snQdVBg.png =70%x) ### Simplification ![](https://i.imgur.com/z862tF8.png =70%x) ### Conjunction ![](https://i.imgur.com/H7mtDIb.png =70%x) ### Resolution ![](https://i.imgur.com/B9Ixz7B.png =70%x) ### Universal Instantiation (UI) ![](https://i.imgur.com/3evMw5O.png =70%x) ### Universal Generalization (UG) ![](https://i.imgur.com/1c3AzUq.png =70%x) ### Exitential Instantiation (EI) ![](https://i.imgur.com/rLSCzsN.png =70%x) ### Exitential Generalization (EG) ![](https://i.imgur.com/sswSHWg.png =70%x) ### Universal Modus Ponens (UI + MP) ![](https://i.imgur.com/kSPX6Yk.png =70%x) ## Section 1.7: Intruduction to Proods ### Definitions - theorem 定理 => 說明某件事是對的 - axioms 公理 - lemma 引理 - corollary 推論 - conjecture 猜測 => 認為是對的,但還沒證明出來 ### Proving Conditional Statements: p->q - Trivial Proof - Vacuous Proof - Direct Proof - Proof by Contraposition = indirect proof - **p $\implies$ q** $\equiv$ **$\neg\,$p $\lor$ q** - Proof by Contradiction 矛盾證法 => 假設前提不成立 ## Section 1.8: Proof Methods and Strategy ### Without Loss of Generality(WLOG) 若兩種情況,令x為這種情況,y令為另外一種情況 且不失一般性(Without Loss of Generality) x, y的假設倒過來時,結果也會成立。 ### Nonconstructive Existence Proofs - assume no c exists which makes $P(c)$ true and derive a **contradiction** - 矛盾證法,假設不存在 ### Proof Strategies for proving: p->q - forward reasoning - backward reasoning ### Counterexamples (反例) 利用反例證明假設不成立