# 影像處理期末 速記 [TOC] ### ==Model of Image Degradation/Restoration== >If H is a linear, position-invariant process, then the degraded image is given in the spatial domain by: > $g(x,y)=h(x,y)*f(x,y)+ \eta \{x,y\}$ > 退化函數 H 與 input(x,y)卷積 加上 additive noise達成 restoration > h(x, y) is the spatial representation of the degradation function > The more we know about 𝐻 and 𝜂, the closer 𝑓 ̂(𝑥,𝑦) will be to 𝑓(𝑥, 𝑦). ### filter #### median filter > ![image](https://hackmd.io/_uploads/rkCQiVd_p.png) > 使用中值取代中心像素 > 廣泛用於消除「椒鹽」噪聲,能有效減少 impulse noise #### Max and min filter ![image](https://hackmd.io/_uploads/ByishV_dp.png) > 使用最大或最小值取代window內的像素 > 能突出亮部或暗部並保留邊緣像素 #### midpoint filter ![image](https://hackmd.io/_uploads/rJGyAVOdT.png) >This filter works best for randomly distributed noise, like Gaussian or uniform noise. >譯: 濾波器最適合消除隨機分佈的噪點 #### alpha-trimmed mean filter ![image](https://hackmd.io/_uploads/HyKQyB__T.png) > The alpha-trimmed filter is useful in situations involving multiple types of noise, such as a combination of salt-and-pepper and Gaussian noise > 可以有效抑制混合的噪點,並有可調動的參數 ### Local Binary Pattern(LBP) ![image](https://hackmd.io/_uploads/r1aZYZYO6.png) ![image](https://hackmd.io/_uploads/BJgl9WYda.png) **局部二值模式(Local Binary Pattern, LBP)是一種用於紋理辨識的特徵描述子。 它透過比較中心像素與其周圍鄰域像素的灰階值來運作。 如果鄰域像素的灰階值大於或等於中心像素,則將其賦值為1,否則為0。 這樣,對於每個中心像素,都會得到一個二進制數,進而可以轉換成十進制來表示該中心像素的紋理特徵。** 公式如下: >$LBP_{P,R} = \sum_{p=0}^{P-1} s(g_p - g_c) \cdot 2^p$ 其中: - \( P \) 是鄰域中的像素數量, - \( R \) 是鄰域的半徑, - \( $g_c$ \) 是中心像素的灰階值, - \( $g_p$ \) 是鄰域內第 \( p \) 個像素的灰階值, - \( s(x) \) 是符號函數,當 \( x $\geq$ 0 \) 時,\( s(x) = 1 \),否則 \( s(x) = 0 \)。 透過這個方法,我們可以提取出影像的局部紋理訊息,這對於影像分析和處理非常有用。 ### Otsu’s method for optimal global thresholding ![image](https://hackmd.io/_uploads/Bk-x6ztOT.png) ### ==Correcting tonal imbalances== >> Describe the typical transformations used for correcting three common tonal imbalances, namely, flat, light, and dark images, in RGB color space ![image](https://hackmd.io/_uploads/BJxlzfK_6.png) ### polygonal approximation ![image](https://hackmd.io/_uploads/SJPNwzFO6.png) ![image](https://hackmd.io/_uploads/SJ97PfY_6.png) ### 3 types of ADIs ![image](https://hackmd.io/_uploads/rkHHeQYu6.png) ### Canny edge operator ![image](https://hackmd.io/_uploads/H1LNW7Fd6.png) ######