$試求 f(x)=x^3-12x+1,在-3\leq x\leq3時的最大與最小值$ > $f'(x)=3x^2-12=3(x^2-4)=3(x+2)(x-2)$ $\Rightarrow f'(2)=f'(-2)=0$ $\Rightarrow f(x)在x=\pm2時可能有極值$ > >$又f''(x)=6x$ >$f''(2)=12\Rightarrow 在x=2附近凹口向上\Rightarrow x=2處有最小值\Rightarrow 最小值為f(2)=-15$ >$f''(-2)=-12\Rightarrow 在x=-2附近凹口向下\Rightarrow x=2處有最大值\Rightarrow 最大值為f(-2)=17$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up