# Table Structure Recognition using Top-Down and Bottom-Up Cues ###### tags: `Table Detection` 這篇在解==辨識無框線的表格== [Paper](https://arxiv.org/pdf/2010.04565.pdf) [Github](https://github.com/sachinraja13/TabStructNet) [中文版簡介](https://www.gushiciku.cn/pl/gTrM/zh-tw) ## TabStruct-Net 簡介 TabStruct-Net 是 <font color=blue>end to end</font> 結構,用於單元檢測和表格結構識別 TabStructNet ==使用表格影象作為輸入== (而<font color=red>不是包含表格的文件影象</font>),並嘗試預測表格結構,它使用兩個階段的過程 * Top-Down: Cell Detection 自上而下階段(<font color=blue>分解階段</font>):這是基於 RCNN (修改的 FPN )的單元檢測 (基本表格物件) 網路 * Bottom-Up: Structure Recognition 自下而上階段(<font color=blue>合成階段</font>):其從單元檢測網路獲取資訊(自上而下階段),以及它們使用鄰接矩陣的行-列關聯,並重建整個表格 * Post-processing: 用 Tesseract 辨識文字 大致流程如圖: ![](https://i.imgur.com/H5kcmzh.png) ## UNLV Dataset 標註 * SR / ER: start row / end row * SC / EC: start column / end column ![](https://i.imgur.com/wOH8TPr.png) ## TabStruct-Net 架構 Cell Detection Network + Structure Recognition Network ![](https://i.imgur.com/NKNBxYy.png) * Top-Down: Cell Detection Network * 使用 Mask R-CNN 架構 * (a) we augment the Region Proposal Network (rpn) ==with dilated convolutions== to better <font color=blue>capture long-range row and column</font> visual features of the table. * (b) we ==append the feature pyramid network== with a top-down pathway, which propagates high-level semantic information to low-level feature maps. This allows the network to <font color=blue>work better for cells with varying scales</font> * (c) we ==append additional losses== during the training phase in order to model the inherent struc- tural constraints. * Loss function: 看起來就是四個欄位的 loss 加總 ![](https://i.imgur.com/pP1tdYO.png) ![](https://i.imgur.com/WFfeovC.png =360x72) * Bottom-Up: Structure Recognition Network * Visual Component * 拿 FPN 的 P2 層與預測出來的 cell 做 linear interpolation (內插法),分別拿 centre horizontal and centre vertical lines 做 LSTM 得到最後的 final visual features * Interaction Component * 使用 ==DGCNN== architecture based on graph neural networks 整合 LSTM 輸出的 visual features * Classification Component * This is fed as an input to the row/column classifiers <font color=blue>to predict row/column associations.</font> * 最後 output 應該是得到==相鄰矩陣== (adjacency matrix) 找對應的 row & column ![](https://i.imgur.com/ak3EIra.png) ![](https://i.imgur.com/taRfeTN.png) ## 論文辨識結果 Cell Detection Network: ![](https://i.imgur.com/O7eVyMz.png) Structure Recognition Network: * First Row: prediction of cells which belong to the ==same row== * Second Row: prediction of cells which belong to the ==same column== ![](https://i.imgur.com/oNzGF9g.png)