# Codes for practice №14 ###### tags: `mathbio` ```code=python %matplotlib notebook def lorenz(x, y, z, s=10, r=14.82, b=2.667): ''' Given: x, y, z: a point of interest in three dimensional space s, r, b: parameters defining the lorenz attractor Returns: x_dot, y_dot, z_dot: values of the lorenz attractor's partial derivatives at the point x, y, z ''' x_dot = s*(y - x) y_dot = r*x - y - x*z z_dot = x*y - b*z return x_dot, y_dot, z_dot dt = 0.01 num_steps = 100000 # Need one more for the initial values xs = np.empty(num_steps + 1) ys = np.empty(num_steps + 1) zs = np.empty(num_steps + 1) # Plot fig = plt.figure(figsize=(10,10)) ax = fig.gca(projection='3d') ax.set_xlim(-15,15) ax.set_ylim(-15,15) ax.set_zlim(0,20) xs[0], ys[0], zs[0] = (0., 1., 1.05) for i in range(num_steps): x_dot, y_dot, z_dot = lorenz(xs[i], ys[i], zs[i]) xs[i + 1] = xs[i] + (x_dot * dt) ys[i + 1] = ys[i] + (y_dot * dt) zs[i + 1] = zs[i] + (z_dot * dt) ax.plot(xs.copy(), ys.copy(), zs.copy(), '-k', lw=0.5) xs *= 0; ys *= 0; zs *= 0; xs[0], ys[0], zs[0] = (-10., 1., 1.05) for i in range(num_steps): x_dot, y_dot, z_dot = lorenz(xs[i], ys[i], zs[i]) xs[i + 1] = xs[i] + (x_dot * dt) ys[i + 1] = ys[i] + (y_dot * dt) zs[i + 1] = zs[i] + (z_dot * dt) ax.plot(xs.copy(), ys.copy(), zs.copy(), '-r', lw=0.5) ax.set_xlabel("X Axis") ax.set_ylabel("Y Axis") ax.set_zlabel("Z Axis") ax.set_title("Lorenz Attractor") plt.show() ```