--- tags: Algorithm --- <style> font { color: red; font-weight: bold; } </style> # Review of Mathematics - ==歸納法== (==小考==) - Exp: 證明 $\displaystyle\sum_{i=1}^n i = 1 + 2 + ... + n = \cfrac{n(n+1)}{2}$ - Theorems and Lemmas - Logarithms 1. $\log_a 1 = 0$ 2. $a^{\log_ax} = x$ 3. $\log_a(xy) = log_a x + log_a y$ 4. $\log_a \cfrac{x}{y} = \log_a x - \log_a y$ 5. $\log_a x^y = y \log_a x$ 6. $x^{\log_a y} = y^{\log_a x}$ 7. $\log_a x = \cfrac{\log_b x}{\log_b a}$ - Sets - 交集、聯集、元素不重複 - Permutations(排列) and Combinations - $P^n_m = \cfrac{n!}{(n-m)!} = C^n_m \times m!=n \times (n-1) \times ... (n-m+1)$ - E.g., abc 可以排列出 abc, acb, bac, bca, cab, cba $\Rightarrow P^3_3 = 3 \times 2 \times 1 = 6$ - $C^n_m = \cfrac{n!}{m!(n-m)!}$ - Probability 可能會用到的級數和: - 平方: $\displaystyle\sum_{i=1}^n i^2 = \cfrac{n(n+1)(2n+1)}{6}$ - 立方: $\displaystyle\sum_{i=1}^n i^3 = \left(\cfrac{n(n+1)}{2}\right)^2$ - 等比級數: $\cfrac{a(1-r^n)}{1-r}$ or $\cfrac{a(r^n-1)}{r-1}$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up