--- tags: labnote_cover --- # Decision Problems ## Set system - $(U, \mathcal{G})$ - finite set $U$ - collection $\mathcal{G}$ of subsets of $U$ ## Set-Cover - Given a set system $(U, \mathcal{G})$ and a number $k$, can we cover $U$ with $k$ sets from $\mathcal{G}$? - $l$-set cover means any $G\in\mathcal{G}$ satisfies $|G|\leq l$ ## Maximum coverage - Given a set system $(U,\mathcal{G})$, numbers $k$ and $t$, are there $k$ sets from $\mathcal{G}$ that together cover at least $t$ elements in $U$ - note: any set cover instance can be solved by the maximum coverage instance with $t=|U|$. ## メモ - Decision ver. of Set Cover $(\mathcal{G}, [\![N]\!], k)$ - $k$個選んで$[\![N]\!]$をカバーできるか? - Decision ver. of Maximum coverage $(\mathcal{G},[\![N]\!], k, t)$ - $k$個選んで$[\![N]\!]$のうち$t$個以上をカバーできるか? - Decision ver. of PWC $(S, k, \tau)$ - $k$個選んでコスト$\tau$の輸送を達成できるか? ## 修正案 - 今までの$\mathtt{kSetCover}$ と読んでいたやつを $\mathtt{SetCover}$ に直す ![](https://i.imgur.com/VBoCSJh.png) - 今までの議論で,$k$以下を選んで (i.e., $|S|\leq k$) コスト$0$になる輸送をつくれたら,Set Coverが解けるとする