--- tags: Ensai - public --- # TD clustring - code ``` anciennete=c(2,3,5,6,8) salaire=c(2000,2100,3500,4100,10000) data=cbind(anciennete,salaire) data=as.data.frame(data) dataScale=as.data.frame(scale(data)) distance= function(i,j,data) { sqrt( rowSums((data[i,]-data[j,])**2 ) ) } distances= function(data){ a= matrix(data = rep(0, 25), nrow = 5, ncol = 5) for (i in 1:5) { for (j in i:5) { a[i,j]=distance(i,j,data) } } round(a,2) } distances(data) distances(dataScale) library(FactoMineR) library(Factoshiny) library(explor) # install.packages("Factoshiny") # install.packages("explor") Factoshiny::HCPCshiny(data) Factoshiny::PCAshiny(data) res.PCA<-PCA(data,ncp=Inf, scale.unit=TRUE,graph=FALSE) res.HCPC=HCPC(res.PCA,method="single") explor(res.PCA) ```