---
tags: Ensai - public
---
# TD clustring - code
```
anciennete=c(2,3,5,6,8)
salaire=c(2000,2100,3500,4100,10000)
data=cbind(anciennete,salaire)
data=as.data.frame(data)
dataScale=as.data.frame(scale(data))
distance= function(i,j,data) {
sqrt(
rowSums((data[i,]-data[j,])**2 )
)
}
distances= function(data){
a= matrix(data = rep(0, 25), nrow = 5, ncol = 5)
for (i in 1:5) {
for (j in i:5) {
a[i,j]=distance(i,j,data)
}
}
round(a,2)
}
distances(data)
distances(dataScale)
library(FactoMineR)
library(Factoshiny)
library(explor)
# install.packages("Factoshiny")
# install.packages("explor")
Factoshiny::HCPCshiny(data)
Factoshiny::PCAshiny(data)
res.PCA<-PCA(data,ncp=Inf, scale.unit=TRUE,graph=FALSE)
res.HCPC=HCPC(res.PCA,method="single")
explor(res.PCA)
```