{%hackmd @cimeesia/SJv5Zgj1yl %} # chefo's HW 2 ## Photo ![](https://cdn.discordapp.com/attachments/1304127974290882620/1341836039349862513/20250219_101642.jpg?ex=67b771b1&is=67b62031&hm=56915faf7fed7727f803efa0b3453873b57cd33c405c65f66a2bc15aa0a811c8&) ## Q15 \begin{align} \\ f(x) = & \frac{2}{4p-20} + \frac{p-6}{p^2-8p+15} \\ f(x) = & \frac{2}{4(p-5)} + \frac{p-6}{(p-5)(p-3)} \end{align} Multiply both the numerator and denominator of ==the first fraction== by ==$(p - 3)$==, and multiply both the numerator and denominator of ==the second fraction== by ==$4$==. \begin{gather} \\ f(x) = & \frac{2(p-3)}{4(p-5)(p-3)} + \frac{4(p-6)}{4(p-5)(p-3)} \end{gather} Now the denominator is the same, so we can combine the numerator now. \begin{gather} f(x) = & \frac{2(p-3) + 4(p-6)}{4(p-5)(p-3)} \end{gather} ~~I don't think I need to continue.~~ OK, I was wrong. \begin{gather} f(x) = & \frac{2p-6+4p-24}{4(p-5)(p-3)} \\ f(x) = & \frac{6p-30}{4(p-5)(p-3)} \\ f(x) = & \frac{6(p-5)}{4(p-5)(p-3)} \end{gather} At here, we can cancel that ==$(p-5)$==. \begin{gather} f(x) = & \frac{6}{4(p-3)} \\ f(x) = & \frac{3}{2(p-3)} \\ f(x) = & \frac{3}{2p-6} \\ \end{gather}