# Deep Learning Workshop (@ FJU 2021) 本頁連結: https://bit.ly/32bYPUL ## 檔案下載 * [講義](https://www.dropbox.com/s/zsqa03lyp7kai8o/FJU_DL_intro_2021.pdf?dl=1) * [範例程式 & 資料集](https://www.dropbox.com/s/udurwhwbxjeewz2/fju_workshop_20210414.tar.gz?dl=1) ## 環境 * 若為Windows環境 (無GPU),請安裝[Anaconda](https://www.anaconda.com/products/individual)後,加裝如下套件: * 基本套件 ```bash pip install pandas matplotlib seaborn numpy scipy ``` * 機器學習套件 ```bash pip install tensorflow==2.4.0 sklearn ``` * 其它套件 ```bash pip install pillow mlxtend numexpr conda install -y shapely pip install imgaug opencv-python==4.4.0.46 pip install jupyterlab ``` * 若為Linux (有GPU), 可考慮透過Docker啟動準備好的開發環境 (映像檔)。 ```bash= nvidia-docker run -v /data:/workspace \ -p 10003:22 \ -p 10002:8888 \ -p 10001:6006 \ --name tf \ --privileged \ --ipc=host \ moeaidb/aigo:cu11.1-dnn8.0.5-gpu-tf-cv-20.12 ``` 一些連結: * [AIGO TensorFlow 映像檔說明](https://aigo.org.tw/zh-tw/hub/tool/2) * [Docker使用簡介](https://aigo.org.tw/zh-tw/onlinecourse/467) * [TensorFlow 映像檔 (NVIDIA 提供)](https://ngc.nvidia.com/catalog/containers/nvidia:tensorflow) * [TensorFlow 映像檔 (TensorFlow 官方提供)]( https://hub.docker.com/r/tensorflow/tensorflow) ## 已學習內容 * Loss minimization equals to Likelihood maximization * Understood Gradient Descent (GD) & Stochastic Gradient Descent (SGD) * The meaning of Iteration, Batch size * L1 and L2 can be used to against overfitting * Definitions of Precision, Recall, F1 * Usage of TensorFlow Gradient Tape * Backpropagation * Understand how to build & train a Multi-Layer Perceptron (using Sequential API) * History of Convolutional Neural Network * Understand how to construct building blocks of Inception (Model API), and ResNet (subclassing API) * BatchNorm, Dropout, Gaussian blur (data augmentation) can be used to against overfitting * Adaptive methods (each weight now has its own learning rate) #### 程式範例 * [[00]]( http://211.75.15.15:19201/00.html) * [[01-GradientTapeForLinearRegression]]( http://211.75.15.15:19201/01-GradientTapeForLinearRegression.html) * [[02-BasicLayersDenseConvMaxpooling]]( http://211.75.15.15:19201/02-BasicLayersDenseConvMaxpooling.html) * [[04-InceptionAndVGG]]( http://211.75.15.15:19201/04-InceptionAndVGG.html) * [[05-ResNetAndDenseNet]]( http://211.75.15.15:19201/05-ResNetAndDenseNet.html) * [[07-FacialKeypointDetection]]( http://211.75.15.15:19201/07-FacialKeypointDetection.html) # 補充連結 * Stanford CS231 [[Convolution layer]](https://cs231n.github.io/convolutional-networks/) * Review Article [[Deep Learning; Nature, Yann LeCun 2015]](https://www.cs.toronto.edu/~hinton/absps/NatureDeepReview.pdf) --- 翁啟閎 chihung@honghutech.com