# IIIEDU-BDSE13-ML-DL-with-Python 本頁連結: https://hackmd.io/@chweng/bdse13 1. 安裝CUDA 2. 設定NVSMI (看NVIDIA DRIVER有沒有裝好) 1. 將```C:\Program Files\NVIDIA Corporation\NVSMI```加入System ```PATH``` 2. 加入後, 開啟終端機(如GIT BASH), 然後輸入```nvidia-smi.exe```, 按Enter, 即可顯示出GPU使用率等資訊 3. 安裝cuDNN 將解壓縮後的資料, 逐一複製到```C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1``` 4. 確定nvcc有安裝 (看CUDA有沒有裝好) ```nvcc -V``` 5. 安裝TensorFlow ```pip install tensorflow_gpu-2.1.0-cp37-cp37m-win_amd64.whl``` 安裝好後, 執行python, 然後載入TensorFlow並且嘗試看能否印出TensorFlow的版本: ```python import tensorflow as tf print(tf.__version__) ``` --- 請安裝Anaconda後,加裝如下套件: * 基本套件 ```bash pip install pandas matplotlib seaborn numpy scipy ``` * 機器學習套件 ```bash pip install sklearn xgboost==0.90 ``` * 其它套件 ```bash pip install pillow graphviz pip install mlxtend pip install numexpr conda install -y shapely pip install imgaug opencv-python==3.4.7.28 pip install jupyterlab ``` ## 補充投影片 ![](https://i.imgur.com/FRBNC9m.jpg) ![](https://i.imgur.com/gZ5gwYI.jpg) ![](https://i.imgur.com/TW8Pk7Q.png) ![](https://i.imgur.com/sSQXFQy.jpg) ![](https://i.imgur.com/5IIjBMS.jpg) ![](https://i.imgur.com/Y39b8vC.jpg) ![](https://i.imgur.com/9tUtA3t.jpg) ![](https://i.imgur.com/XWaF7hb.jpg) ## 補充連結 * Python Machine Learning 課本的[筆記本教材](https://github.com/rasbt/python-machine-learning-book-2nd-edition) * Stanford CS231 [[Convolution layer]](https://cs231n.github.io/convolutional-networks/) ## 作業 * **hw1**: Linear regression: 離群值會讓模型學得比較不好。試著去掉離群值,然後再訓練一次模型,看$R^2$有沒有變好。 --- 翁啟閎 chi-hung.weng@gmx.de