# Deep-Learning-Workshop @ASE (10/23-25) Link of this page: https://bit.ly/2p4Pq1k --- * Day-1: [[Link]](https://www.dropbox.com/s/032a7y4vkd3drqy/20191023_ase_day1.pdf?dl=0) for slides * Day-1: [[Link]](https://www.dropbox.com/s/k678yo1ylrnm4dy/ase_20191023.tar.gz?dl=0) for notebooks and datasets * Day-2: * [[06-FacialKeypointDetection.ipynb]](https://www.dropbox.com/s/6qwyhgcvu9qfcdd/06-FacialKeypointDetection.ipynb?dl=0) * [[misc.py]](https://www.dropbox.com/s/c9d0k4rpt7znyod/misc.py?dl=0) * Day-3: * [[07-GroupNormalization.ipynb]](https://www.dropbox.com/s/q4hdoo9q3qbesaf/07-groupnorm.ipynb?dl=0) (put it in $ROOTDIR/notebooks) * [[mrcnn_tutorial.tar.gz]](https://www.dropbox.com/s/n2wj0m7dahzcyba/mrcnn_tutorial.tar.gz?dl=0)(unzip and put it in $ROOTDIR/) * [[Link]](https://www.dropbox.com/s/9tb5vinpo0hsjox/20191025_ase_day3.pdf?dl=0) for slides * [[Link]](https://www.dropbox.com/s/gzhxibd6s260cb8/mrcnn_network.pdf?dl=0) for MRCNN network topology We'll use AIGO's [TensorFlow container](https://aigo.org.tw/ai-plus/hub/tool_detail/3). --- * 01-GradientTapeAndLinearRegression [[html]](http://211.75.15.16:60000/ase-01-GradientTapeAndLinearRegression.html) * 02-LayersIO [[html]](http://211.75.15.16:60000/ase-02-LayersIO.html) * 03-InceptionAndVGG [[html]](http://211.75.15.16:60000/ase-03-InceptionAndVGG.html) * 04-ResNetAndDenseNet [[html]](http://211.75.15.16:60000/ase-04-ResNetAndDenseNet.html) * 06-FacialKeypointDetection [[html]](http://211.75.15.16:60000/ase-06-FacialKeypointDetection.html) * 07-GroupNorm [[html]](http://211.75.15.16:60000/ase-07-GroupNorm.html) * 08-FacialKeypointDetection-MultiGPU [[html]](http://211.75.15.16:60000/ase-08-FacialKeypointDetection-MultiGPU.html) --- #### Day 1: Getting started with TensorFlow 2.0 * Record gradients with ```Gradient Tape``` * *code: linear regression* * Model construction with ```tf.keras``` * ```Sequential``` API, ```Model``` API, ```Sub-classing``` API * *code: VGG, ResNet , DenseNet* #### Day 2: Multi-GPU & mixed-precision training * ```tf.strategy``` for Multi-GPU training * Speed-up the training with ```Automatic Mixed-Precision``` * Introduction to keypoint detection * *code: facial landmark detection (UNet + heatmap regression)* #### Day 3: Integrate GN into Mask RCNN * Group Normalization (GN) * Mask RCNN code review * ~~```SavedModel``` to ```TensorRT``` for faster model inference~~ --- ![](https://i.imgur.com/xsEfL7j.png) 翁啟閎 Data Scientest @ HonghuTech chihung@honghutech.com