# i5 benchmark openvino@a5e56ae1868d:~$ python3 run_command.py cmd:python3 /opt/intel/openvino/deployment_tools/tools/benchmark_tool/benchmark_app.py -m /mnt/openvino_models/public/yolo-v3-tf/FP32/yolo-v3-tf.xml -d CPU -api async -t 60 MKLDNNPlugin............ version 2.1 [ INFO ] Read network took 109.47 ms [ INFO ] Load network took 901.70 ms [Step 10/11] Measuring performance (Start inference asynchronously, 4 inference requests using 4 streams for CPU, limits: 60000 ms duration) [ INFO ] First inference took 312.66 ms Latency: 871.92 ms Throughput: 4.58 FPS cmd:python3 /opt/intel/openvino/deployment_tools/tools/benchmark_tool/benchmark_app.py -m /mnt/openvino_models/public/yolo-v3-tf/FP16/yolo-v3-tf.xml -d CPU -api async -t 60 MKLDNNPlugin............ version 2.1 [ INFO ] Read network took 76.73 ms [ INFO ] Load network took 1065.13 ms [Step 10/11] Measuring performance (Start inference asynchronously, 4 inference requests using 4 streams for CPU, limits: 60000 ms duration) [ INFO ] First inference took 311.86 ms Latency: 862.59 ms Throughput: 4.64 FPS cmd:python3 /opt/intel/openvino/deployment_tools/tools/benchmark_tool/benchmark_app.py -m /mnt/openvino_models/public/yolo-v3-tf/FP16-INT8/yolo-v3-tf.xml -d CPU -api async -t 60 MKLDNNPlugin............ version 2.1 [ INFO ] Read network took 66.48 ms [ INFO ] Load network took 968.93 ms [Step 10/11] Measuring performance (Start inference asynchronously, 4 inference requests using 4 streams for CPU, limits: 60000 ms duration) [ INFO ] First inference took 85.29 ms Latency: 226.31 ms Throughput: 17.68 FPS cmd:python3 /opt/intel/openvino/deployment_tools/tools/benchmark_tool/benchmark_app.py -m /mnt/openvino_models/public/yolo-v3-tf/FP32/yolo-v3-tf.xml -d GPU -api async -t 60 clDNNPlugin............. version 2.1 [ INFO ] Read network took 103.00 ms [ INFO ] Load network took 39881.59 ms [Step 10/11] Measuring performance (Start inference asynchronously, 4 inference requests using 2 streams for GPU, limits: 60000 ms duration) [ INFO ] First inference took 107.76 ms Latency: 416.58 ms Throughput: 9.57 FPS cmd:python3 /opt/intel/openvino/deployment_tools/tools/benchmark_tool/benchmark_app.py -m /mnt/openvino_models/public/yolo-v3-tf/FP16/yolo-v3-tf.xml -d GPU -api async -t 60 clDNNPlugin............. version 2.1 [ INFO ] Read network took 61.12 ms [ INFO ] Load network took 39660.13 ms [Step 10/11] Measuring performance (Start inference asynchronously, 4 inference requests using 2 streams for GPU, limits: 60000 ms duration) [ INFO ] First inference took 59.65 ms Latency: 217.70 ms Throughput: 18.30 FPS cmd:python3 /opt/intel/openvino/deployment_tools/tools/benchmark_tool/benchmark_app.py -m /mnt/openvino_models/public/yolo-v3-tf/FP16-INT8/yolo-v3-tf.xml -d GPU -api async -t 60 clDNNPlugin............. version 2.1 [ INFO ] Read network took 45.05 ms [ INFO ] Load network took 45793.99 ms [Step 10/11] Measuring performance (Start inference asynchronously, 4 inference requests using 2 streams for GPU, limits: 60000 ms duration) [ INFO ] First inference took 30.05 ms Latency: 99.70 ms Throughput: 39.89 FPS cmd:python3 /opt/intel/openvino/deployment_tools/tools/benchmark_tool/benchmark_app.py -m /mnt/openvino_models/public/yolo-v4-tf/FP32/yolo-v4-tf.xml -d CPU -api async -t 60 MKLDNNPlugin............ version 2.1 [ INFO ] Read network took 129.29 ms [ INFO ] Load network took 1096.62 ms [Step 10/11] Measuring performance (Start inference asynchronously, 4 inference requests using 4 streams for CPU, limits: 60000 ms duration) [ INFO ] First inference took 683.86 ms Latency: 1881.45 ms Throughput: 2.13 FPS cmd:python3 /opt/intel/openvino/deployment_tools/tools/benchmark_tool/benchmark_app.py -m /mnt/openvino_models/public/yolo-v4-tf/FP16/yolo-v4-tf.xml -d CPU -api async -t 60 MKLDNNPlugin............ version 2.1 [ INFO ] Read network took 78.18 ms [ INFO ] Load network took 1183.26 ms [Step 10/11] Measuring performance (Start inference asynchronously, 4 inference requests using 4 streams for CPU, limits: 60000 ms duration) [ INFO ] First inference took 675.68 ms Latency: 1858.83 ms Throughput: 2.15 FPS cmd:python3 /opt/intel/openvino/deployment_tools/tools/benchmark_tool/benchmark_app.py -m /mnt/openvino_models/public/yolo-v4-tf/FP16-INT8/yolo-v4-tf.xml -d CPU -api async -t 60 MKLDNNPlugin............ version 2.1 [ INFO ] Read network took 70.25 ms [ INFO ] Load network took 1120.62 ms [Step 10/11] Measuring performance (Start inference asynchronously, 4 inference requests using 4 streams for CPU, limits: 60000 ms duration) [ INFO ] First inference took 226.80 ms Latency: 591.58 ms Throughput: 6.76 FPS cmd:python3 /opt/intel/openvino/deployment_tools/tools/benchmark_tool/benchmark_app.py -m /mnt/openvino_models/public/yolo-v4-tf/FP32/yolo-v4-tf.xml -d GPU -api async -t 60 clDNNPlugin............. version 2.1 [ INFO ] Read network took 109.72 ms [ INFO ] Load network took 57584.71 ms [Step 10/11] Measuring performance (Start inference asynchronously, 4 inference requests using 2 streams for GPU, limits: 60000 ms duration) [ INFO ] First inference took 251.02 ms Latency: 948.32 ms Throughput: 4.20 FPS cmd:python3 /opt/intel/openvino/deployment_tools/tools/benchmark_tool/benchmark_app.py -m /mnt/openvino_models/public/yolo-v4-tf/FP16/yolo-v4-tf.xml -d GPU -api async -t 60 clDNNPlugin............. version 2.1 [ INFO ] Read network took 62.36 ms [ INFO ] Load network took 57727.26 ms [Step 10/11] Measuring performance (Start inference asynchronously, 4 inference requests using 2 streams for GPU, limits: 60000 ms duration) [ INFO ] First inference took 128.43 ms Latency: 470.14 ms Throughput: 8.44 FPS cmd:python3 /opt/intel/openvino/deployment_tools/tools/benchmark_tool/benchmark_app.py -m /mnt/openvino_models/public/yolo-v4-tf/FP16-INT8/yolo-v4-tf.xml -d GPU -api async -t 60 clDNNPlugin............. version 2.1 [ INFO ] Read network took 49.51 ms [ INFO ] Load network took 65218.11 ms [Step 10/11] Measuring performance (Start inference asynchronously, 4 inference requests using 2 streams for GPU, limits: 60000 ms duration) [ INFO ] First inference took 63.55 ms Latency: 222.57 ms Throughput: 17.89 FPS python3 /opt/intel/openvino/deployment_tools/tools/benchmark_tool/benchmark_app.py -m /mnt/openvino_models/public/deeplabv3/FP16-INT8/deeplabv3.xml -d GPU /opt/intel/openvino/python/python3.8/openvino/tools/benchmark/utils/utils.py:219: SyntaxWarning: "is not" with a literal. Did you mean "!="? if arg_name is not '': /opt/intel/openvino/python/python3.8/openvino/tools/benchmark/utils/utils.py:225: SyntaxWarning: "is not" with a literal. Did you mean "!="? if arg_name is not '': [Step 1/11] Parsing and validating input arguments [ WARNING ] -nstreams default value is determined automatically for a device. Although the automatic selection usually provides a reasonable performance, but it still may be non-optimal for some cases, for more information look at README. [Step 2/11] Loading Inference Engine [ INFO ] InferenceEngine: API version............. 2.1.2021.3.0-2787-60059f2c755-releases/2021/3 [ INFO ] Device info GPU clDNNPlugin............. version 2.1 Build................... 2021.3.0-2787-60059f2c755-releases/2021/3 [Step 3/11] Setting device configuration [ WARNING ] -nstreams default value is determined automatically for GPU device. Although the automatic selection usually provides a reasonable performance,but it still may be non-optimal for some cases, for more information look at README. [Step 4/11] Reading network files [ INFO ] Read network took 22.40 ms [Step 5/11] Resizing network to match image sizes and given batch [ INFO ] Network batch size: 1 [Step 6/11] Configuring input of the model [Step 7/11] Loading the model to the device [ INFO ] Load network took 31586.12 ms [Step 8/11] Setting optimal runtime parameters [Step 9/11] Creating infer requests and filling input blobs with images [ INFO ] Network input 'mul_1/placeholder_port_1' precision U8, dimensions (NCHW): 1 3 513 513 [ WARNING ] No input files were given: all inputs will be filled with random values! [ INFO ] Infer Request 0 filling [ INFO ] Fill input 'mul_1/placeholder_port_1' with random values (image is expected) [ INFO ] Infer Request 1 filling [ INFO ] Fill input 'mul_1/placeholder_port_1' with random values (image is expected) [ INFO ] Infer Request 2 filling [ INFO ] Fill input 'mul_1/placeholder_port_1' with random values (image is expected) [ INFO ] Infer Request 3 filling [ INFO ] Fill input 'mul_1/placeholder_port_1' with random values (image is expected) [Step 10/11] Measuring performance (Start inference asynchronously, 4 inference requests using 2 streams for GPU, limits: 60000 ms duration) [ INFO ] First inference took 28.52 ms [Step 11/11] Dumping statistics report Count: 3052 iterations Duration: 60107.73 ms Latency: 76.91 ms Throughput: 50.78 FPS