# OpenVINO Quick Get Started on Ubuntu 20.04 ###### tags: `OpenVINO` `2021.2` `Ubuntu` `20.04` ## 在 Ubuntu 20.04 電腦上安裝 OpenVINO Toolkit - Table of Content [ToC] ### :memo: 系統需求 硬體 : Intel CPU 筆電/桌機/NUC ![](https://i.imgur.com/lr5Wr4q.png) 軟體 : Ubuntu 20.04 Intel Distribution OpenVINO Toolkit Python 3.8.x 64-bit ### 下載 Intel® Distribution of OpenVINO™ Toolkit https://software.intel.com/en-us/openvino-toolkit/choose-download ![](https://i.imgur.com/xMu9X8x.png) ### 安裝 Intel® Distribution of OpenVINO™ Toolkit Step 1: Open a command prompt terminal window. Step 2: Unpack the .tgz file. tar -xzf l_openvino_toolkit_p_2.185.tgz Step 3: Go to the l_openvino_toolkit_p_2.185 directory: cd l_openvino_toolkit_p_2.185 Step 4: Choose your installation option. sudo ./install_GUI.sh Step 5: Follow the instructions in the installer. ![](https://i.imgur.com/CpqBbkM.png) ![](https://i.imgur.com/KhOBXDL.png) ![](https://i.imgur.com/FEd8PJH.png) ![](https://i.imgur.com/QhiTN4X.png) ![](https://i.imgur.com/GVKa1Ac.png) ![](https://i.imgur.com/KRFVdXo.png) Step 6: The core components are installed. To complete the configuration, follow the instructions in the Complete Installation Guide. ### 安裝OpenVINO toolkit所需的Python套件 ``` cd /opt/intel/openvino_2021/install_dependencies/ sudo ./install_openvino_dependencies.sh source /opt/intel/openvino_2021/bin/setupvars.sh cd /opt/intel/openvino_2021/deployment_tools/model_optimizer/install_prerequisites ./install_prerequisites_tf2.sh ./install_prerequisites_onnx.sh cd /opt/intel/openvino_2021/deployment_tools/tools/model_downloader/ pip3 install -r requirements.in ``` ### 安裝OpenVINO toolkit所需的Python套件 : 使用virtualenv (建議使用,非必須) ``` cd /opt/intel/openvino_2021/install_dependencies/ sudo ./install_openvino_dependencies.sh sudo -E apt -y --no-install-recommends install python3-pip python3-venv sudo -E python3 -m pip install --upgrade pip python3 -m venv ~/ov_venv source ~/ov_venv/bin/activate source /opt/intel/openvino_2021/bin/setupvars.sh pip3 install -r /opt/intel/openvino_2021/deployment_tools/model_optimizer/requirements_tf2.txt pip3 install -r /opt/intel/openvino_2021/deployment_tools/model_optimizer/requirements_onnx.txt pip3 install -r /opt/intel/openvino_2021/deployment_tools/tools/model_downloader/requirements.in ```` ### 使用OpenVINO Toolkit做影像辨識 使用神經網路模型執行影像辨識只要三個步驟 1. 取得神經網路模型 1. 對神經網路模型進行推論優化 1. 執行影像辨識推論 (在Intel CPU, Intel GPU以及VPU) ### 步驟1 取得神經網路模型 ![](https://i.imgur.com/8AwisMg.png) ``` cd python3 /opt/intel/openvino_2021/deployment_tools/tools/model_downloader/downloader.py --name mobilenet-v2-1.0-224 ``` ### 步驟2 對神經網路模型進行推論優化 ![](https://i.imgur.com/VVgopAA.png) ``` cd python3 /opt/intel/openvino_2021/deployment_tools/tools/model_downloader/converter.py --name mobilenet-v2-1.0-224 ``` ### 步驟3 執行影像辨識推論 (18 lines of Python code) ![](https://i.imgur.com/5EZNcnz.png) ``` cd cp ~/public/mobilenet-v2-1.0-224/FP16/mobilenet-v2-1.0-224.xml . cp ~/public/mobilenet-v2-1.0-224/FP16/mobilenet-v2-1.0-224.bin . cp /opt/intel/openvino_2021/deployment_tools/demo/car.png . python3 ``` ```python= import cv2 import numpy as np from openvino.inference_engine import IENetwork, IECore ie = IECore() net = ie.read_network(model='mobilenet-v2-1.0-224.xml') input_blob = next(iter(net.inputs)) out_blob = next(iter(net.outputs)) batch,channel,height,width = net.inputs[input_blob].shape image = cv2.imread('car.png') cv2.imshow("input", image) image = cv2.resize(image, (width, height)) image = image.transpose((2, 0, 1)) # Change data layout from HWC to CHW exec_net = ie.load_network(network=net, device_name='CPU') res = exec_net.infer(inputs={input_blob: image}) idx = np.argsort(np.squeeze(res[out_blob][0]))[::-1] for i in range(5): print(idx[i]+1, res[out_blob][0][idx[i]]) cv2.waitKey(3*1000) ```