# Intel® Edge AI Performance Evaluation Toolkit User Guide
Intel® Edge AI Performance Evaluation Toolkit is an Edge AI customer enabling tool that has been designed to easily qualify and evaluate platform deep learning inference performance.
## Components
It consists of scripts, configuration files, Intel Power and Thermal Analysis Tool (PTAT) workspace file and optimized OpenVINO INT8 IR model and brief explanation below,
* **OS setup scripts** - are used to setup container running environment on both Ubuntu Linux and Windows OS.
* **OpenVINO POT quantization scripts and configuration files** - are used to quantize OpenVINO FP32/FP16 IR models to INT8 by OpenVINO Post-Training Optimization Tool.
* **Benchmark scripts and Intel PTAT workspace file** - are used to benchmark optimized INT8 IR model and monitor system frequency and thermal condition to qualify system performance.
## Supported HW
* Intel® Core™ i7-1165G7 Processor
* Intel® Core™ i7-1185G7E Processor
* Intel® Celeron® 6305E
## License
Intel® Edge AI Performance Evaluation is licensed under Apache License Version 2.0. By contributing to the project, you agree to the license and copyright terms therein and release your contribution under these terms.
## User Guide
Below are steps to get started for Ubuntu 20.04.4 and Windows 10 21H2
### User Guide for Ubuntu 20.04
**Install Ubuntu 20.04.4**
https://ubuntu.com/tutorials/install-ubuntu-desktop#1-overview
**Clone Intel® Edge AI Performance Evaluation Toolkit**
```=bash
sudo apt update
sudo apt upgrade
sudo apt install git
git clone https://github.com/intel/Intel-Edge-AI-Performance-Evaluation-Toolkit.git
```
**Install docker utility by running**
```=bash
cd Intel-Edge-AI-Performance-Evaluation-Toolkit
bash tools/install_docker.sh
```
Reboot system.
**Install Intel Power and Thermal Analysis Tool**
Tool download link : [Intel® Power And Thermal Analysis Tool](https://www.intel.com/content/www/us/en/secure/design/confidential/software-kits/kit-details.html?kitId=637737)

**Loading Intel PTAT workspace file from ptat_workspace.xml**

**Run Benchmark and Quantization Scripts**
1. **Copy yolo-v4-tf FP16_INT8 IR model to Downloads folder in Home directory**
```=bash
cd Intel-Edge-AI-Performance-Evaluation-Toolkit
cp -ar openvino_models/ $HOME/Downloads
```
2. **Run benchmark_app on yolo-v4-tf FP16_INT8 IR model on CPU**
```=bash
bash run_yolo-v4-tf-int8-cpu_benchmark.sh
```

3. **Run benchmark_app on yolo-v4-tf FP16_INT8 IR model on GPU**
```=bash
bash run_yolo-v4-tf-int8-gpu_benchmark.sh
```

4. **Run quantization on yolo-v3-tf FP16 IR model**
```=bash
bash quantize_yolo-v3-tf_int8.sh
```
### User Guide for Windows 10
**Install Windows 10 21H1**
* Download Windows Insider Preview ISO (microsoft.com) and install
* Install required graphic driver (30.0.101.xxxx)
**Download Intel® Edge AI Performance Evaluation Toolkit github link below**
https://github.com/intel/Intel-Edge-AI-Performance-Evaluation-Toolkit/archive/refs/heads/main.zip
Extract to C:\Users\Public\Intel-Edge-AI-Performance-Evaluation-Toolkit.
**Enable Hypher-V (Run as Administator in PowerShell)**
Please refere to tools\enable-hyper-v.p1 and run below,
```
Enable-WindowsOptionalFeature -Online -FeatureName Microsoft-Hyper-V –All
```
Press Y to reboot system.
**Install WSL2 (Run as Administator in PowerShell) and Reboot**
Please refere to tools\install_wsl2.p1 and run below,
```
wsl --install
Restart-Computer
```
After reboot, WSL will start automatically to install Ubuntu. Enter user name and password for WSL Ubuntu when prompt.
**Install docker utility by running in WSL**
```=bash
cd /mnt/c/Users/Public/Intel-Edge-AI-Performance-Evaluation-Toolkit
bash tools/install_docker.sh
```
Reboot to activate docker settings.
**Install Intel Power and Thermal Analysis Tool**
Tool download link : [Intel® Power And Thermal Analysis Tool](https://www.intel.com/content/www/us/en/secure/design/confidential/software-kits/kit-details.html?kitId=637737)


**Launch Intel PTAT tool as administrator**

**Loading Intel PTAT workspace file from ptat_workspace.json**

**Run Benchmark and Quantization Scripts in WSL**
1. **Copy yolo-v4-tf FP16_INT8 IR model to Downloads folder in Home directory**
```=bash
cd /mnt/c/Users/Public/Intel-Edge-AI-Performance-Evaluation-Toolkit
mkdir $HOME/Downloads
cp -ar openvino_models/ $HOME/Downloads
```
2. **Run benchmark_app on yolo-v4-tf FP16_INT8 IR model on CPU**
```=bash
bash run_yolo-v4-tf-int8-cpu_benchmark.sh
```

3. **Run benchmark_app on yolo-v4-tf FP16_INT8 IR model on GPU**
```=bash
bash run_yolo-v4-tf-int8-gpu_benchmark.sh
```

4. **Run quantization on yolo-v3-tf FP16 IR model**
```=bash
sudo apt install unzip
bash tools/download_coco_dataset.sh
bash quantize_yolo-v3-tf_int8.sh
```
## How to contribute
See [CONTRIBUTING](https://github.com/intel/Intel-Edge-AI-Performance-Evaluation-Toolkit/blob/main/CONTRIBUTING.md) for details. Thank you!
## Get a support
Please report questions, issues and suggestions using:
[GitHub* Issues](https://github.com/intel/Intel-Edge-AI-Performance-Evaluation-Toolkit/issues)