# Chinese Ordering System # Run with container image on Ubuntu 20.04.2 Host 11th Gen Core system ``` docker pull chungyehwangai/chinese_ordering_system:0.7 docker run -it -v /tmp/.X11-unix:/tmp/.X11-unix -e DISPLAY=$DISPLAY -v ~/Downloads:/mnt --device /dev/dri:/dev/dri --group-add=$(stat -c "%g" /dev/dri/render*) --rm chungyehwangai/chinese_ordering_system:0.7 cd /mnt ln -s /home/openvino/chinese_ordering . cd /mnt/chinese_ordering/Chinese.Ordering.System/ export MODEL_DIR=/mnt/chinese_ordering/Chinese.Ordering.System/ir export VOCAB_DIR=/mnt/chinese_ordering/Chinese.Ordering.System/vocab/ export PARAGRAPH_FILE=mc_paragraph.txt python3.7 ordering_system_demo_pipeline.py \ -m_mel ${MODEL_DIR}/mel.xml \ -m_mg ${MODEL_DIR}/melgan.xml \ -m_d ${MODEL_DIR}/decoder.xml \ -m_e ${MODEL_DIR}/encoder.xml \ -m_dp ${MODEL_DIR}/duration_predictor.xml \ -m_b ${MODEL_DIR}/bert.xml \ -m_a ${MODEL_DIR}/deepspeech-0.9.3-models-zh-CN.xml \ -p mds09x_cn \ -para ${PARAGRAPH_FILE} \ -i audio/sample.wav \ -v_b ${VOCAB_DIR}/vocab_bert.txt \ -v_p ${VOCAB_DIR}/vocab_pinyin.txt \ -L ${MODEL_DIR}/deepspeech-0.9.3-models-zh-CN.scorer ``` # Detail steps https://github.com/FengYen-Chang/Chinese.Ordering.System git clone https://github.com/FengYen-Chang/Chinese.Ordering.System.git cd Chinese.Ordering.System/ mkdir ir python3.7 -m pip install ds-ctcdecoder==0.9.3 cd model-conversion/mozilla-deepspeech-0.9.3-zh-CN wget https://github.com/mozilla/DeepSpeech/releases/download/v0.9.3/deepspeech-0.9.3-models-zh-CN.pbmm wget https://github.com/mozilla/DeepSpeech/releases/download/v0.9.3/deepspeech-0.9.3-models-zh-CN.scorer python3.7 pbmm_to_pb.py deepspeech-0.9.3-models-zh-CN.pbmm deepspeech-0.9.3-models-zh-CN.pb python3.7 /opt/intel/openvino/deployment_tools/model_optimizer/mo.py \ --input_model deepspeech-0.9.3-models-zh-CN.pb \ --freeze_placeholder_with_value="input_lengths->16" \ --input=input_node,previous_state_h,previous_state_c \ --input_shape=[1,16,19,26],[1,2048],[1,2048] \ --disable_nhwc_to_nchw \ --output=logits,cudnn_lstm/rnn/multi_rnn_cell/cell_0/cudnn_compatible_lstm_cell/GatherNd,cudnn_lstm/rnn/multi_rnn_cell/cell_0/cudnn_compatible_lstm_cell/GatherNd_1 mv deepspeech-0.9.3-models-zh-CN.xml ../../ir mv deepspeech-0.9.3-models-zh-CN.bin ../../ir mv deepspeech-0.9.3-models-zh-CN.mapping ../../ir mv deepspeech-0.9.3-models-zh-CN.scorer ../../ir cd ../../ python3 speech_recognition_demo.py -i audio/sample.wav -p mds09x_cn -m deepspeech-0.9.3-models-zh-CN.xml ### TTS git clone https://github.com/FengYen-Chang/Chinese.Ordering.System.git cd Chinese.Ordering.System git submodule update --init ./extension/mandarin-tts git submodule update --init ./extension/melgan cd ./extension/mandarin-tts pip install gdown gdown https://drive.google.com/uc?id=11mBus5gn69_KwvNec9Zy9jjTs3LgHdx3 tar xf fastspeech2u_ckpt.tar.gz sudo apt-get install ffmpeg sudo apt-get install liblzma-dev pip3 install -r requirements.txt python3 export_onnx.py --model_file ./ckpt/hanzi/checkpoint_300000.pth.tar --text_file ./test.txt --channel 2 --duration_control 1.0 --output_dir ./output cd onnx pip3 install -r /opt/intel/openvino/deployment_tools/model_optimizer/requirements_onnx.txt python3 /opt/intel/openvino_2021/deployment_tools/model_optimizer/mo.py --input_model mel.onnx python3 /opt/intel/openvino_2021/deployment_tools/model_optimizer/mo.py --input_model decoder.onnx python3 /opt/intel/openvino_2021/deployment_tools/model_optimizer/mo.py --input_model duration_predictor.onnx python3 /opt/intel/openvino_2021/deployment_tools/model_optimizer/mo.py --input_model encoder.onnx cd ../../../extension/melgan python3 export_onnx.py cd onnx python3 /opt/intel/openvino_2021/deployment_tools/model_optimizer/mo.py --input_model melgan.onnx For test, you can run the tts.py. python3 tts.py \ -m_mel /your_root/Chinese.Ordering.System/extension/mandarin-tts/onnx/mel.xml \ -m_mg /your_root/Chinese.Ordering.System/extension/melgan/onnx/melgan.xml \ -m_d /your_root/Chinese.Ordering.System/extension/mandarin-tts/onnx/decoder.xml \ -m_e /your_root/Chinese.Ordering.System/extension/mandarin-tts/onnx/encoder.xml \ -m_dp /your_root/Chinese.Ordering.System/extension/mandarin-tts/onnx/duration_predictor.xml \ -i 一百五一百五一百五一百五一百五一百五一百五一百五一百五一百五 ### BERT git clone https://github.com/FengYen-Chang/Chinese.Ordering.System.git git submodule update --init ./extension/cmrc2018/ cd menu-generator python mc_menu_generator.py cd ../extension/cmrc2018/baseline apt update apt install software-properties-common add-apt-repository ppa:deadsnakes/ppa apt update apt install python3.7 python3.7 -m pip install tensorflow==1.15.0 //pip install tensorflow==1.15.0 python3.7 run_cmrc2018_drcd_baseline.py \ --vocab_file=/mnt/roberta-wwm-base-distill/model/3layers_large/vocab.txt \ --bert_config_file=/mnt/roberta-wwm-base-distill/model/3layers_large/bert_config.json \ --init_checkpoint=/mnt/roberta-wwm-base-distill/model/3layers_large/bert_model.ckpt \ --do_train=True \ --train_file=../../../menu-generator/test_1.json \ --do_predict=True \ --predict_file=../../../menu-generator/test_1.json \ --train_batch_size=32 \ --num_train_epochs=40 \ --max_seq_length=256 \ --doc_stride=128 \ --learning_rate=3e-5 \ --save_checkpoints_steps=1000 \ --output_dir=aa \ --do_lower_case=False \ --use_tpu=False ### numpy 1.21.0 causing issue below. Used 1.18.1 instead to resolve. ``` INFO:tensorflow:***** Running predictions ***** I0701 06:39:57.537319 140599964568448 run_cmrc2018_drcd_baseline.py:1257] ***** Running predictions ***** INFO:tensorflow: Num orig examples = 76 I0701 06:39:57.537443 140599964568448 run_cmrc2018_drcd_baseline.py:1258] Num orig examples = 76 INFO:tensorflow: Num split examples = 111 I0701 06:39:57.537497 140599964568448 run_cmrc2018_drcd_baseline.py:1259] Num split examples = 111 INFO:tensorflow: Batch size = 8 I0701 06:39:57.537549 140599964568448 run_cmrc2018_drcd_baseline.py:1260] Batch size = 8 INFO:tensorflow:Calling model_fn. I0701 06:39:57.556351 140599964568448 estimator.py:1148] Calling model_fn. INFO:tensorflow:Running infer on CPU I0701 06:39:57.556496 140599964568448 tpu_estimator.py:3124] Running infer on CPU INFO:tensorflow:*** Features *** I0701 06:39:57.556693 140599964568448 run_cmrc2018_drcd_baseline.py:647] *** Features *** INFO:tensorflow: name = input_ids, shape = (?, 256) I0701 06:39:57.556771 140599964568448 run_cmrc2018_drcd_baseline.py:649] name = input_ids, shape = (?, 256) INFO:tensorflow: name = input_mask, shape = (?, 256) I0701 06:39:57.556828 140599964568448 run_cmrc2018_drcd_baseline.py:649] name = input_mask, shape = (?, 256) INFO:tensorflow: name = input_span_mask, shape = (?, 256) I0701 06:39:57.556879 140599964568448 run_cmrc2018_drcd_baseline.py:649] name = input_span_mask, shape = (?, 256) INFO:tensorflow: name = segment_ids, shape = (?, 256) I0701 06:39:57.556931 140599964568448 run_cmrc2018_drcd_baseline.py:649] name = segment_ids, shape = (?, 256) INFO:tensorflow: name = unique_ids, shape = (?,) I0701 06:39:57.556982 140599964568448 run_cmrc2018_drcd_baseline.py:649] name = unique_ids, shape = (?,) ERROR:tensorflow:Error recorded from prediction_loop: Cannot convert a symbolic Tensor (bert/encoder/strided_slice:0) to a numpy array. E0701 06:39:57.594310 140599964568448 error_handling.py:75] Error recorded from prediction_loop: Cannot convert a symbolic Tensor (bert/encoder/strided_slice:0) to a numpy array. INFO:tensorflow:prediction_loop marked as finished I0701 06:39:57.594428 140599964568448 error_handling.py:101] prediction_loop marked as finished WARNING:tensorflow:Reraising captured error W0701 06:39:57.594482 140599964568448 error_handling.py:135] Reraising captured error Traceback (most recent call last): File "run_cmrc2018_drcd_baseline.py", line 1366, in <module> tf.app.run() File "/usr/local/lib/python3.7/dist-packages/tensorflow_core/python/platform/app.py", line 40, in run _run(main=main, argv=argv, flags_parser=_parse_flags_tolerate_undef) File "/usr/local/lib/python3.7/dist-packages/absl/app.py", line 312, in run _run_main(main, args) File "/usr/local/lib/python3.7/dist-packages/absl/app.py", line 258, in _run_main sys.exit(main(argv)) File "run_cmrc2018_drcd_baseline.py", line 1274, in main predict_input_fn, yield_single_examples=True): File "/usr/local/lib/python3.7/dist-packages/tensorflow_estimator/python/estimator/tpu/tpu_estimator.py", line 3078, in predict rendezvous.raise_errors() File "/usr/local/lib/python3.7/dist-packages/tensorflow_estimator/python/estimator/tpu/error_handling.py", line 136, in raise_errors six.reraise(typ, value, traceback) File "/usr/lib/python3/dist-packages/six.py", line 703, in reraise raise value File "/usr/local/lib/python3.7/dist-packages/tensorflow_estimator/python/estimator/tpu/tpu_estimator.py", line 3072, in predict yield_single_examples=yield_single_examples): File "/usr/local/lib/python3.7/dist-packages/tensorflow_estimator/python/estimator/estimator.py", line 622, in predict features, None, ModeKeys.PREDICT, self.config) File "/usr/local/lib/python3.7/dist-packages/tensorflow_estimator/python/estimator/tpu/tpu_estimator.py", line 2857, in _call_model_fn config) File "/usr/local/lib/python3.7/dist-packages/tensorflow_estimator/python/estimator/estimator.py", line 1149, in _call_model_fn model_fn_results = self._model_fn(features=features, **kwargs) File "/usr/local/lib/python3.7/dist-packages/tensorflow_estimator/python/estimator/tpu/tpu_estimator.py", line 3126, in _model_fn features, labels, is_export_mode=is_export_mode) File "/usr/local/lib/python3.7/dist-packages/tensorflow_estimator/python/estimator/tpu/tpu_estimator.py", line 1663, in call_without_tpu return self._call_model_fn(features, labels, is_export_mode=is_export_mode) File "/usr/local/lib/python3.7/dist-packages/tensorflow_estimator/python/estimator/tpu/tpu_estimator.py", line 1994, in _call_model_fn estimator_spec = self._model_fn(features=features, **kwargs) File "run_cmrc2018_drcd_baseline.py", line 666, in model_fn use_one_hot_embeddings=use_one_hot_embeddings) File "run_cmrc2018_drcd_baseline.py", line 601, in create_model use_one_hot_embeddings=use_one_hot_embeddings) File "/mnt/chinese_ordering/Chinese.Ordering.System/extension/cmrc2018/baseline/modeling.py", line 202, in __init__ input_ids, input_mask) File "/mnt/chinese_ordering/Chinese.Ordering.System/extension/cmrc2018/baseline/modeling.py", line 552, in create_attention_mask_from_input_mask shape=[batch_size, from_seq_length, 1], dtype=tf.float32) File "/usr/local/lib/python3.7/dist-packages/tensorflow_core/python/ops/array_ops.py", line 2560, in ones output = _constant_if_small(one, shape, dtype, name) File "/usr/local/lib/python3.7/dist-packages/tensorflow_core/python/ops/array_ops.py", line 2295, in _constant_if_small if np.prod(shape) < 1000: File "<__array_function__ internals>", line 6, in prod File "/usr/local/lib/python3.7/dist-packages/numpy/core/fromnumeric.py", line 3052, in prod keepdims=keepdims, initial=initial, where=where) File "/usr/local/lib/python3.7/dist-packages/numpy/core/fromnumeric.py", line 86, in _wrapreduction return ufunc.reduce(obj, axis, dtype, out, **passkwargs) File "/usr/local/lib/python3.7/dist-packages/tensorflow_core/python/framework/ops.py", line 736, in __array__ " array.".format(self.name)) NotImplementedError: Cannot convert a symbolic Tensor (bert/encoder/strided_slice:0) to a numpy array. ``` python3.7 export_pb.py \ --vocab_file=/mnt/roberta-wwm-base-distill/model/3layers_large/vocab.txt \ --bert_config_file=/mnt/roberta-wwm-base-distill/model/3layers_large/bert_config.json \ --init_checkpoint=aa/model.ckpt-138 \ --do_train=True \ --train_file=../../../menu-generator/test_1.json \ --do_predict=True \ --predict_file=../../../menu-generator/test_1.json \ --train_batch_size=32 \ --num_train_epochs=40 \ --max_seq_length=256 \ --doc_stride=128 \ --learning_rate=3e-5 \ --save_checkpoints_steps=1000 \ --output_dir=aa \ --do_lower_case=False \ --use_tpu=False python3.7 /opt/intel/openvino_2021/deployment_tools/model_optimizer/mo.py --input_model=aa/inference_graph.pb \ --input "IteratorGetNext:0{i32}[1 256],IteratorGetNext:1{i32}[1 256],IteratorGetNext:3{i32}[1 256]" \ --disable_nhwc_to_nchw For Ordering system pipeline demo: pip install pyyaml pip install pycnnum pip install ds-ctcdecoder==0.9.3 ``` export MODEL_DIR=/mnt/chinese_ordering/Chinese.Ordering.System/ir export VOCAB_DIR=/mnt/chinese_ordering/Chinese.Ordering.System/vocab/ export PARAGRAPH_FILE=mc_paragraph.txt python3.7 ordering_system_demo_pipeline.py \ -m_mel ${MODEL_DIR}/mel.xml \ -m_mg ${MODEL_DIR}/melgan.xml \ -m_d ${MODEL_DIR}/decoder.xml \ -m_e ${MODEL_DIR}/encoder.xml \ -m_dp ${MODEL_DIR}/duration_predictor.xml \ -m_b ${MODEL_DIR}/bert.xml \ -m_a ${MODEL_DIR}/deepspeech-0.9.3-models-zh-CN.xml \ -p mds09x_cn \ -para ${PARAGRAPH_FILE} \ -i audio/sample.wav \ -v_b ${VOCAB_DIR}/vocab_bert.txt \ -v_p ${VOCAB_DIR}/vocab_pinyin.txt \ -L ${MODEL_DIR}/deepspeech-0.9.3-models-zh-CN.scorer ``` Example for paragraph, mc_paragraph.txt. 麦当劳目前的餐点有:大麦克价格为72元、双层牛肉吉事堡价格为62元、嫩煎鸡腿堡价格为82元、麦香鸡价格为44元、麦克鸡块(6块)价格为60元、麦克鸡块(10块)价格为100元、劲辣鸡腿堡价格为72元、麦脆(2块)价格为110元、麦脆鸡翅(2块)价格为90元、黄金起司猪排堡价格为52元、麦香鱼价格为44元、烟熏鸡肉长堡价格为74元、姜烧猪肉长堡价格为74元、BLT 安格斯黑牛堡价格为109元、BLT 辣脆鸡腿堡价格为109元、BLT 嫩煎鸡腿堡价格为109元、蕈菇安格斯黑牛堡价格为119元、凯萨脆鸡沙拉价格为99元和义式烤鸡沙拉价格为99元。 The content of the mc_paragraph.txt is from Bert's training data. ![](https://i.imgur.com/EuKzndx.png) ``` root@93805c56e6de:/mnt/chinese_ordering/Chinese.Ordering.System# history 1 cd 2 apt update 3 apt install git 4 cd /mnt/ 5 mkdir chinese_ordering 6 cd chinese_ordering/ 7 git clone https://github.com/FengYen-Chang/Chinese.Ordering.System.git 8 cd Chinese.Ordering.System/ 9 ls 10 git submodule update --init ./extension/mandarin-tts 11 git submodule update --init ./extension/melgan 12 cd ./extension/mandarin-tts 13 pip install gdown 14 gdown https://drive.google.com/uc?id=11mBus5gn69_KwvNec9Zy9jjTs3LgHdx3 15 tar xf fastspeech2u_ckpt.tar.gz 16 sudo apt-get install ffmpeg 17 apt-get install ffmpeg 18 ls 19 pip3 install -r requirements.txt 20 apt-get install liblzma-dev 21 pip3 install -r requirements.txt 22 python3 export_onnx.py --model_file ./ckpt/hanzi/checkpoint_300000.pth.tar --text_file ./test.txt --channel 2 --duration_control 1.0 --output_dir ./output 23 ls 24 cd onnx/ 25 ls 26 python3 /opt/intel/openvino_2021/deployment_tools/model_optimizer/mo.py --input_model mel.onnx 27 pip3 install /opt/intel/openvino/deployment_tools/model_optimizer/requirements_onnx.txt 28 pip3 install -r /opt/intel/openvino/deployment_tools/model_optimizer/requirements_onnx.txt 29 python3 /opt/intel/openvino_2021/deployment_tools/model_optimizer/mo.py --input_model mel.onnx 30 python3 /opt/intel/openvino_2021/deployment_tools/model_optimizer/mo.py --input_model decoder.onnx 31 ls 32 python3 /opt/intel/openvino_2021/deployment_tools/model_optimizer/mo.py --input_model duration_predictor.onnx 33 ls 34 python3 /opt/intel/openvino_2021/deployment_tools/model_optimizer/mo.py --input_model encoder.onnx 35 cd ../../../extension/melga 36 cd ../../../extension/melgan/ 37 ls 38 python3 export_onnx.py 39 cd onnx/ 40 ls 41 python3 /opt/intel/openvino_2021/deployment_tools/model_optimizer/mo.py --input_model melgan.onnx 42 ls 43 cd ../../ 44 ls 45 cd ../ 46 ls 47 python3 tts.py -m_mel /mnt/chinese_ordering/Chinese.Ordering.System/extension/mandarin-tts/onnx/mel.xml -m_mg /mnt/chinese_ordering/Chinese.Ordering.System/extension/melgan/onnx/melgan.xml -m_d /mnt/chinese_ordering/Chinese.Ordering.System/extension/mandarin-tts/onnx/decoder.xml -m_e /mnt/chinese_ordering/Chinese.Ordering.System/extension/mandarin-tts/onnx/encoder.xml -m_dp /mnt/chinese_ordering/Chinese.Ordering.System/extension/mandarin-tts/onnx/duration_predictor.xml -i 一百五一百五一百五一百五一百五一百五一百五一百五一百五一百五 48 git submodule update --init ./extension/cmrc2018/ 49 cd menu-generato 50 ls 51 cd menu-generator/ 52 python mc_menu_generator.py 53 python3 mc_menu_generator.py 54 cd ../extension/cmrc2018/baseline/ 55 pip install tensorflow==1.15.0 56 pip3 install tensorflow==1.15.0 57 python3 -m pip install tensorflow==1.15.0 58 pip3 list | grep tensor 59 pip3 install tensorflow==1.15 60 python3 -m venv 61 cd 62 python3 -m venv -h 63 apt install software-properties-common 64 add-apt-repository ppa:deadsnakes/ppa 65 apt update 66 apt install python3.7 67 which python 68 which python3 69 which python3.7 70 ls -l /usr/bin/python3 71 python3.7 72 python3.7 -m pip install tensorflow==1.15.0 73 cd /mnt/chinese_ordering/Chinese.Ordering.System/ 74 ls 75 cd extension/ 76 ls 77 cd Chinese.BERT.OpenVINO/ 78 ls 79 ls ../cmrc2018/ 80 cd ../../ 81 find | grep robeta 82 find | grep roberta 83 git submodule update --init ./extension/Chinese.BERT.OpenVINO 84 history ``` for bert + deepspeech ``` 1 cd /mnt/chinese_ordering/Chinese.Ordering.System/ 2 ls 3 cd extension/cmrc2018/ 4 cd ba 5 ls 6 cd baseline/ 7 python3.7 run_cmrc2018_drcd_baseline.py --vocab_file=/mnt/roberta-wwm-base-distill/model/3layers_large/vocab.txt --bert_config_file=/mnt/roberta-wwm-base-distill/model/3layers_large/bert_config.json --init_checkpoint=/mnt/roberta-wwm-base-distill/model/3layers_large/bert_model.ckpt --do_train=True --train_file=../../../menu-generator/test_1.json --do_predict=True --predict_file=../../../menu-generator/test_1.json --train_batch_size=32 --num_train_epochs=40 --max_seq_length=256 --doc_stride=128 --learning_rate=3e-5 --save_checkpoints_steps=1000 --output_dir=aa --do_lower_case=False --use_tpu=False 8 ls aa 9 ls 10 python3.7 -m pip list | grep numpy 11 python3.7 export_pb.py --vocab_file=/mnt/roberta-wwm-base-distill/model/3layers_large/vocab.txt --bert_config_file=/mnt/roberta-wwm-base-distill/model/3layers_large/bert_config.json --init_checkpoint=aa/model.ckpt-138 --do_train=True --train_file=../../../menu-generator/test_1.json --do_predict=True --predict_file=../../../menu-generator/test_1.json --train_batch_size=32 --num_train_epochs=40 --max_seq_length=256 --doc_stride=128 --learning_rate=3e-5 --save_checkpoints_steps=1000 --output_dir=aa --do_lower_case=False --use_tpu=False 12 ls 13 python3.7 --version 14 python3.7 -m pip list 15 python3.7 -m pip install numpy==1.18.1 16 python3.7 export_pb.py --vocab_file=/mnt/roberta-wwm-base-distill/model/3layers_large/vocab.txt --bert_config_file=/mnt/roberta-wwm-base-distill/model/3layers_large/bert_config.json --init_checkpoint=aa/model.ckpt-138 --do_train=True --train_file=../../../menu-generator/test_1.json --do_predict=True --predict_file=../../../menu-generator/test_1.json --train_batch_size=32 --num_train_epochs=40 --max_seq_length=256 --doc_stride=128 --learning_rate=3e-5 --save_checkpoints_steps=1000 --output_dir=aa --do_lower_case=False --use_tpu=False 17 ls 18 ls aa 19 python3.7 /opt/intel/openvino_2021/deployment_tools/model_optimizer/mo.py --input_model=aa/inference_graph.pb --input "IteratorGetNext:0{i32}[1 256],IteratorGetNext:1{i32}[1 256],IteratorGetNext:3{i32}[1 256]" --disable_nhwc_to_nchw 20 cat /opt/intel/openvino_2021/deployment_tools/model_optimizer/requirements.txt 21 python3.7 -m pip install networkx>=1.11 22 ls 23 rm '=1.11' 24 python3.7 -m pip install 'networkx>=1.11' 25 python3.7 /opt/intel/openvino_2021/deployment_tools/model_optimizer/mo.py --input_model=aa/inference_graph.pb --input "IteratorGetNext:0{i32}[1 256],IteratorGetNext:1{i32}[1 256],IteratorGetNext:3{i32}[1 256]" --disable_nhwc_to_nchw 26 python3.7 -m pip install 'defusedxml>=0.5.0' 27 python3.7 /opt/intel/openvino_2021/deployment_tools/model_optimizer/mo.py --input_model=aa/inference_graph.pb --input "IteratorGetNext:0{i32}[1 256],IteratorGetNext:1{i32}[1 256],IteratorGetNext:3{i32}[1 256]" --disable_nhwc_to_nchw 28 cd ../../ 29 ls 30 mkdir ir 31 cd ir 32 cp ../cmrc2018/baseline/inference_graph.* . 33 ls 34 mkdir bert 35 mv inference_graph.* bert/ 36 ls 37 mv ir ../ 38 cd ../ 39 mv ir ../ 40 cd ../ir/ 41 ls e 42 ls ../extension/ 43 ls ../extension/mandarin-tts/ 44 ls ../extension/mandarin-tts/onnx/ 45 ls ../extension/mandarin-tts/onnx/*xml . 46 cp ../extension/mandarin-tts/onnx/*xml . 47 cp ../extension/mandarin-tts/onnx/*bin . 48 cp ../extension/mandarin-tts/onnx/*mappings . 49 cp ../extension/mandarin-tts/onnx/*mapping . 50 ls 51 cp ../extension/melgan/onnx/melgan.* . 52 ls 53 rm melgan.onnx 54 ls 55 cd ../ 56 ls 57 python3.7 -m pip install ds-ctcdecoder==0.9.3 58 cd cd model-conversion/mozilla-deepspeech-0.9.3-zh-CN 59 cd model-conversion/mozilla-deepspeech-0.9.3-zh-CN 60 wget https://github.com/mozilla/DeepSpeech/releases/download/v0.9.3/deepspeech-0.9.3-models-zh-CN.pbmm 61 apt install wget 62 wget https://github.com/mozilla/DeepSpeech/releases/download/v0.9.3/deepspeech-0.9.3-models-zh-CN.pbmm 63 python3.7 pbmm_to_pb.py deepspeech-0.9.3-models-zh-CN.pbmm deepspeech-0.9.3-models-zh-CN.pb 64 python3.7 /opt/intel/openvino/deployment_tools/model_optimizer/mo.py --input_model deepspeech-0.9.3-models-zh-CN.pb --freeze_placeholder_with_value="input_lengths->16" --input=input_node,previous_state_h,previous_state_c --input_shape=[1,16,19,26],[1,2048],[1,2048] --disable_nhwc_to_nchw --output=logits,cudnn_lstm/rnn/multi_rnn_cell/cell_0/cudnn_compatible_lstm_cell/GatherNd,cudnn_lstm/rnn/multi_rnn_cell/cell_0/cudnn_compatible_lstm_cell/GatherNd_1 65 python3.7 -m pip install "test-generator==0.1.1" 66 ls ../ 67 ls ../../ 68 ls ../../ir/ 69 mv deepspeech-0.9.3-models-zh-CN.xml ../../ir 70 mv deepspeech-0.9.3-models-zh-CN.bin ../../ir 71 mv deepspeech-0.9.3-models-zh-CN.mapping ../../ir 72 cd ../../ 73 python3 speech_recognition_demo.py -i audio/sample.wav -p mds09x_cn -m ir/deepspeech-0.9.3-models-zh-CN.xml 74 python3.7 -m pip install pyyaml 75 python3 speech_recognition_demo.py -i audio/sample.wav -p mds09x_cn -m ir/deepspeech-0.9.3-models-zh-CN.xml 76 python3.7 speech_recognition_demo.py -i audio/sample.wav -p mds09x_cn -m ir/deepspeech-0.9.3-models-zh-CN.xml 77 python3.7 -m pip install tqdm 78 python3.7 speech_recognition_demo.py -i audio/sample.wav -p mds09x_cn -m ir/deepspeech-0.9.3-models-zh-CN.xml 79 cat requirements.txt 80 python3.7 -m pip install -r requirements.txt 81 python3.7 speech_recognition_demo.py -i audio/sample.wav -p mds09x_cn -m ir/deepspeech-0.9.3-models-zh-CN.xml 82 cd ir/ 83 ls 84 mv bert/inference_graph.xml bert.xml 85 mv bert/inference_graph.bin bert.bin 86 mv bert/inference_graph.mapping bert.mapping 87 rm -rf bert 88 export MODEL_DIR=/mnt/chinese_ordering/Chinese.Ordering.System/ir 89 ls ../../../roberta-wwm-base-distill 90 ls ../../../roberta-wwm-base-distill/model/ 91 ls ../../../roberta-wwm-base-distill/model/3layers_large/ 92 vi ../../../roberta-wwm-base-distill/model/3layers_large/vocab.txt 93 cp ../../../roberta-wwm-base-distill/model/3layers_large/vocab.txt bert_vocab.txt 94 ls ../extension/mandarin-tts/ 95 cd ../ 96 ls vocab/ 97 export VOCAB_DIR=/mnt/chinese_ordering/Chinese.Ordering.System/vocab/ 98 find | grep mc_pa 99 ls 100 export PARAGRAPH_FILE=mc_paragraph.txt 101 ls 102 python ordering_system_demo_pipeline.py -m_mel ${MODEL_DIR}/mel.xml -m_mg ${MODEL_DIR}/melgan.xml -m_d ${MODEL_DIR}/decoder.xml -m_e ${MODEL_DIR}/encoder.xml -m_dp ${MODEL_DIR}/duration_predictor.xml -m_b ${MODEL_DIR}/bert.xml -m_a ${MODEL_DIR}/deepspeech-0.9.3-models-zh-CN.xml -p mds09x_cn -para ${PARAGRAPH_FILE} -i audio/sample.wav -v_b ${VOCAB_DIR}/vocab_bert.txt -v_p ${VOCAB_DIR}/vocab_pinyin.txt -L ${MODEL_DIR}/deepspeech-0.9.3-models-zh-CN.scorer 103 python3.7 ordering_system_demo_pipeline.py -m_mel ${MODEL_DIR}/mel.xml -m_mg ${MODEL_DIR}/melgan.xml -m_d ${MODEL_DIR}/decoder.xml -m_e ${MODEL_DIR}/encoder.xml -m_dp ${MODEL_DIR}/duration_predictor.xml -m_b ${MODEL_DIR}/bert.xml -m_a ${MODEL_DIR}/deepspeech-0.9.3-models-zh-CN.xml -p mds09x_cn -para ${PARAGRAPH_FILE} -i audio/sample.wav -v_b ${VOCAB_DIR}/vocab_bert.txt -v_p ${VOCAB_DIR}/vocab_pinyin.txt -L ${MODEL_DIR}/deepspeech-0.9.3-models-zh-CN.scorer 104 python3 ordering_system_demo_pipeline.py -m_mel ${MODEL_DIR}/mel.xml -m_mg ${MODEL_DIR}/melgan.xml -m_d ${MODEL_DIR}/decoder.xml -m_e ${MODEL_DIR}/encoder.xml -m_dp ${MODEL_DIR}/duration_predictor.xml -m_b ${MODEL_DIR}/bert.xml -m_a ${MODEL_DIR}/deepspeech-0.9.3-models-zh-CN.xml -p mds09x_cn -para ${PARAGRAPH_FILE} -i audio/sample.wav -v_b ${VOCAB_DIR}/vocab_bert.txt -v_p ${VOCAB_DIR}/vocab_pinyin.txt -L ${MODEL_DIR}/deepspeech-0.9.3-models-zh-CN.scorer 105 pip3 install yaml 106 pip3 install -r requirements.txt 107 python3 ordering_system_demo_pipeline.py -m_mel ${MODEL_DIR}/mel.xml -m_mg ${MODEL_DIR}/melgan.xml -m_d ${MODEL_DIR}/decoder.xml -m_e ${MODEL_DIR}/encoder.xml -m_dp ${MODEL_DIR}/duration_predictor.xml -m_b ${MODEL_DIR}/bert.xml -m_a ${MODEL_DIR}/deepspeech-0.9.3-models-zh-CN.xml -p mds09x_cn -para ${PARAGRAPH_FILE} -i audio/sample.wav -v_b ${VOCAB_DIR}/vocab_bert.txt -v_p ${VOCAB_DIR}/vocab_pinyin.txt -L ${MODEL_DIR}/deepspeech-0.9.3-models-zh-CN.scorer 108 ls ir/ 109 findls 110 ls 111 ls model-conversion/ 112 ls model-conversion/mozilla-deepspeech-0.9.3-zh-CN/ 113 find model-conversion/ 114 cd ir 115 wget https://github.com/mozilla/DeepSpeech/releases/download/v0.9.3/deepspeech-0.9.3-models-zh-CN.scorer 116 cd ../ 117 python3 ordering_system_demo_pipeline.py -m_mel ${MODEL_DIR}/mel.xml -m_mg ${MODEL_DIR}/melgan.xml -m_d ${MODEL_DIR}/decoder.xml -m_e ${MODEL_DIR}/encoder.xml -m_dp ${MODEL_DIR}/duration_predictor.xml -m_b ${MODEL_DIR}/bert.xml -m_a ${MODEL_DIR}/deepspeech-0.9.3-models-zh-CN.xml -p mds09x_cn -para ${PARAGRAPH_FILE} -i audio/sample.wav -v_b ${VOCAB_DIR}/vocab_bert.txt -v_p ${VOCAB_DIR}/vocab_pinyin.txt -L ${MODEL_DIR}/deepspeech-0.9.3-models-zh-CN.scorer 118 ls 119 ./tts.wav 120 clear 121 history 122 history | grep erport 123 history | grep export 124 clear 125 python ordering_system_demo_pipeline.py -m_mel ${MODEL_DIR}/mel.xml -m_mg ${MODEL_DIR}/melgan.xml -m_d ${MODEL_DIR}/decoder.xml -m_e ${MODEL_DIR}/encoder.xml -m_dp ${MODEL_DIR}/duration_predictor.xml -m_b ${MODEL_DIR}/bert.xml -m_a ${MODEL_DIR}/deepspeech-0.9.3-models-zh-CN.xml -p mds09x_cn -para ${PARAGRAPH_FILE} -i audio/sample.wav -v_b ${VOCAB_DIR}/vocab_bert.txt -v_p ${VOCAB_DIR}/vocab_pinyin.txt -L ${MODEL_DIR}/deepspeech-0.9.3-models-zh-CN.scorer 126 clear 127 clearpython ordering_system_demo_pipeline.py -m_mel ${MODEL_DIR}/mel.xml -m_mg ${MODEL_DIR}/melgan.xml -m_d ${MODEL_DIR}/decoder.xml -m_e ${MODEL_DIR}/encoder.xml -m_dp ${MODEL_DIR}/duration_predictor.xml -m_b ${MODEL_DIR}/bert.xml -m_a ${MODEL_DIR}/deepspeech-0.9.3-models-zh-CN.xml -p mds09x_cn -para ${PARAGRAPH_FILE} -i audio/sample.wav -v_b ${VOCAB_DIR}/vocab_bert.txt -v_p ${VOCAB_DIR}/vocab_pinyin.txt \ 128 python3.7 ordering_system_demo_pipeline.py -m_mel ${MODEL_DIR}/mel.xml -m_mg ${MODEL_DIR}/melgan.xml -m_d ${MODEL_DIR}/decoder.xml -m_e ${MODEL_DIR}/encoder.xml -m_dp ${MODEL_DIR}/duration_predictor.xml -m_b ${MODEL_DIR}/bert.xml -m_a ${MODEL_DIR}/deepspeech-0.9.3-models-zh-CN.xml -p mds09x_cn -para ${PARAGRAPH_FILE} -i audio/sample.wav -v_b ${VOCAB_DIR}/vocab_bert.txt -v_p ${VOCAB_DIR}/vocab_pinyin.txt -L ${MODEL_DIR}/deepspeech-0.9.3-models-zh-CN.scorer 129 history root@56be06b27ef8:/mnt/chinese_ordering/Chinese.Ordering.System# ```