--- tags: Microelectronic Circuits --- # Coursera Introduction to Electronics Week 2-Operational Amplifiers Part 1 ## Introductions to Operational Amplifiers 1. Symbol ![](https://i.imgur.com/bD1Azdp.png) 2. Behaviors 1. Operating in Linear Region ![](https://i.imgur.com/7KwAbAg.png) $A$ is the slope of the graph. 2. Operating in Saturation Region ![](https://i.imgur.com/r6wLTVN.png) 3. Ideal Model ![](https://i.imgur.com/s9KxdIy.png) $\begin{cases}i_+=i_-=0\\v_+=v_-\end{cases}$ 4. Phisical Op Amps ![](https://i.imgur.com/wSU27XK.png)![](https://i.imgur.com/joYlPhL.png)![](https://i.imgur.com/blBql9j.png) ## Applications ### Buffer Circuits ![](https://i.imgur.com/tzDOpy0.png) We use buffer circuits to boost power without changing voltage waveform. ### Non-Inverting Amplifiers ![](https://i.imgur.com/7WPwmSN.png) Focus on the point P $v_{in}=\frac{R_3}{R_2+R_3}v_o\\v_o=\frac{R_2+R_3}{R_3}v_{in}\\Let\ the\ gain\ G=\frac{R_2+R_3}{R_3}\\\Rightarrow v_o=Gv_{in}$ ### Inverting Amplifier ![](https://i.imgur.com/ZiZDWXU.png) Focus on the point P, since it is a ideal amplifier, $i_{in}=0$, $i_1=i_2\\\frac{v_{in}}{R_1}=\frac{v_o}{R_f}\\\Rightarrow V_o=-\frac{R_f}{R_1}V_{in}$ ### Difference Circuit ![](https://i.imgur.com/rfMVNWX.png) $\begin{cases}v_a=\frac{R_f}{R_f+R_1}v_2\\i_1+i_2=0\Rightarrow \frac{v_a-v_1}{R_1}+\frac{v_a-v_o}{R_f}=0\end{cases}\\\Rightarrow\frac{R_f}{R_f+R_1}v_2(\frac{R_1+R_f}{R_1R_f})=\frac{v_1}{R_1}+\frac{v_o}{R_f}\\\Rightarrow v_o=\frac{R_f}{R_1}(v_2-v_1)$ ### Summing Amplifier ![](https://i.imgur.com/5NZVI47.png) $i_1+i_2+i_f=0\\\Rightarrow \frac{v_1}{R_1}+\frac{v_2}{R_2}+\frac{v_o}{R_f}=0\\\Rightarrow v_o=-\frac{R_f}{R_1}v_1-\frac{R_f}{R_2}v_2\\Let\ \begin{cases}G_1=-\frac{R_f}{R_1}\\G_2=-\frac{R_f}{R_2}\end{cases}\\\Rightarrow v_o=G_1v_1+G_2v_2$ ### Differentiator Circuit ![](https://i.imgur.com/naLXYGa.png) $v_o=-RC\frac{dv_{in}}{dt}$ ### Integrator Circuit ![](https://i.imgur.com/Hiivq8p.png) $\begin{split}(i)&For\ t<0\\&v_o=0\end{split}\\\begin{split}(ii)&For\ t>0\\&\begin{cases}-v_{in}+iR+v_C+v_o=0\\i=C\frac{dv_C}{dt}\\v_c=\frac{1}{C}\int_0^tidt\end{cases}\\&v_o=-\frac{1}{RC}\int_0^tv_{in}dt\end{split}$ ## Filters 1. Analog Filters ![](https://i.imgur.com/w32oxiY.png)![](https://i.imgur.com/OduN51b.png) ![](https://i.imgur.com/rXakIZ0.png) 2. The Difference between Analog Filter and Passive Filter 1. Analog Filter ![](https://i.imgur.com/w32oxiY.png)! Analog filters have isolation, which means the $v_o$ doesn't depends on the output resistances. 2. Passive Filter ![](https://i.imgur.com/kA4lpwT.png) Passive filters deplete power. 3. Active Filter ![](https://i.imgur.com/NQJNJ27.png) Active filters have their own power supply and also provide isolation. **Reference** Coursera Introduction to Electronics by Georgia Institute of Technology