# I. Triangle Surface Element To evaluate the integral of $\exp(i(\mathbf{q} \cdot \mathbf{r}))$ over the triangle defined by three vertices $\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3$ in 3D space, we will perform the following steps: ## 1. **Define the Integration** The integral is over the triangle, which is a two-dimensional region embedded in 3D space. We use the parametrization of the triangle to express $\mathbf{r}$ as a combination of the vertices: $$ \mathbf{r}(u, v) = (1-u-v)\mathbf{r}_1 + u\mathbf{r}_2 + v\mathbf{r}_3, $$ where $u, v \geq 0$ and $u+v \leq 1$. ## 2. **Compute the Integral** The integral is given by $$ \int_{\text{triangle}} e^{i (\mathbf{q} \cdot \mathbf{r})} \, dA, $$ The integral over the triangle can be transformed into an integral over $u$ and $v$: $$ \int_{\text{triangle}} e^{i (\mathbf{q} \cdot \mathbf{r})} \, dA = \int_0^1 \int_0^{1-u} e^{i (\mathbf{q} \cdot \mathbf{r}(u,v))} |\mathbf{n}| \, dv \, du. $$ Here, $|\mathbf{n}| = 2A$, where: $$ A = \frac{1}{2} \| (\mathbf{r}_2 - \mathbf{r}_1) \times (\mathbf{r}_3 - \mathbf{r}_1) \| $$ is the area of the triangle. ## 3. Express the result as $\mathbf{q} \cdot \mathbf{r}_1, \mathbf{q} \cdot \mathbf{r}_2, \mathbf{q} \cdot \mathbf{r}_3$ If we denote the known values of $\mathbf{q} \cdot \mathbf{r}_1, \mathbf{q} \cdot \mathbf{r}_2, \mathbf{q} \cdot \mathbf{r}_3$ as $\text{qr1}, \text{qr2}, \text{qr3}$, the expression for the integral simplifies to: $$ |\mathbf{n}|\int_0^1 \int_0^{1-u} e^{i \big((1-u-v)\text{qr1} + u\text{qr2} + v\text{qr3}\big)} \, dv \, du. $$ Now we focus on the double integral. ### 3.1 **Substitute the exponent** $$ (1-u-v)\text{qr1} + u\text{qr2} + v\text{qr3} = \text{qr1} + u(\text{qr2} - \text{qr1}) + v(\text{qr3} - \text{qr1}). $$ ### 3.2 **Factorize the exponential** $$ e^{i\text{qr1}} \int_0^1 \int_0^{1-u} e^{i \big(u(\text{qr2} - \text{qr1}) + v(\text{qr3} - \text{qr1})\big)} \, dv \, du. $$ ### 3.3 **Perform the $v$-integration** Since $(v$ is independent of $u$ within the exponential term: $$ \int_0^{1-u} e^{i v (\text{qr3} - \text{qr1})} dv = \frac{e^{i(1-u)(\text{qr3} - \text{qr1})} - 1}{i(\text{qr3} - \text{qr1})}. $$ ### 3.4. **Substitute back and integrate over $u$** The remaining integral over $u$ involves the term: $$ \int_0^1 e^{i u (\text{qr2} - \text{qr1})} \frac{e^{i(1-u)(\text{qr3} - \text{qr1})} - 1}{i(\text{qr3} - \text{qr1})} du. $$ ## 4. Evaluate the integral $$ \int_0^1 \frac{e^{i u (\text{qr2} - \text{qr1})} \big(e^{i (1-u)(\text{qr3} - \text{qr1})} - 1\big)}{i (\text{qr3} - \text{qr1})} \, du. $$ $$ = \frac{e^{i u(\text{qr3} - \text{qr1})}}{i(\text{qr3} - \text{qr1})}\int_0^1 e^{i u(\text{qr2} - \text{qr3})}\, du + \int_0^1 e^{i u(\text{qr2} - \text{qr1})}\, du $$ <!-- ### 4.1. **Simplify the exponentials**: Expand $e^{i(1-u)(\text{qr3} - \text{qr1})}$: $$ e^{i(1-u)(\text{qr3} - \text{qr1})} = e^{i (\text{qr3} - \text{qr1})} e^{-i u (\text{qr3} - \text{qr1})}. $$ Substitute this into the integral: $$ \int_0^1 \frac{e^{i u (\text{qr2} - \text{qr1})} \big(e^{i (\text{qr3} - \text{qr1})} e^{-i u (\text{qr3} - \text{qr1})} - 1\big)}{i (\text{qr3} - \text{qr1})} \, du. $$ Factor out constants: $$ = \frac{e^{i (\text{qr3} - \text{qr1})}}{i (\text{qr3} - \text{qr1})} \int_0^1 e^{i u (\text{qr2} - \text{qr3})} \, du- \frac{1}{i (\text{qr3} - \text{qr1})} \int_0^1 e^{i u (\text{qr2} - \text{qr1})} \, du. $$ --> ### 4.2. **Evaluate the basic exponential integrals**: For any $a \neq 0$, $$ \int_0^1 e^{i a u} \, du = \frac{e^{i a} - 1}{i a}. $$ Apply this formula to both terms: - For $\int_0^1 e^{i u (\text{qr2} - \text{qr3})} \, du$: $$ \frac{e^{i (\text{qr2} - \text{qr3})} - 1}{i (\text{qr2} - \text{qr3})}. $$ - For $\int_0^1 e^{i u (\text{qr2} - \text{qr1})} \, du$: $$ \frac{e^{i (\text{qr2} - \text{qr1})} - 1}{i (\text{qr2} - \text{qr1})}. $$ ### 4.3. **Combine terms**: Substitute these results back into the original expression: $$ \frac{e^{i (\text{qr3} - \text{qr1})}}{i (\text{qr3} - \text{qr1})} \cdot \frac{e^{i (\text{qr2} - \text{qr3})} - 1}{i (\text{qr2} - \text{qr3})}- \frac{1}{i (\text{qr3} - \text{qr1})} \cdot \frac{e^{i (\text{qr2} - \text{qr1})} - 1}{i (\text{qr2} - \text{qr1})}. $$ $$ =\frac{e^{i (\text{qr3} - \text{qr1})} \big(e^{i (\text{qr2} - \text{qr3})} - 1\big)}{- (\text{qr3} - \text{qr1})(\text{qr2} - \text{qr3})}- \frac{e^{i (\text{qr2} - \text{qr1})} - 1}{- (\text{qr3} - \text{qr1})(\text{qr2} - \text{qr1})}. $$ <!-- $$ \frac{e^{i (\text{qr3} - \text{qr1})} \big(e^{i (\text{qr2} - \text{qr3})} - 1\big)}{- (\text{qr3} - \text{qr1})(\text{qr2} - \text{qr3})}- \frac{e^{i (\text{qr2} - \text{qr1})} - 1}{- (\text{qr3} - \text{qr1})(\text{qr2} - \text{qr1})}. $$ --> Include the factor $e^{i \, \text{qr1}}$ back to the integral: $$ e^{i \, \text{qr1}} \left( \frac{e^{i (\text{qr3} - \text{qr1})} \big(e^{i (\text{qr2} - \text{qr3})} - 1\big)}{- (\text{qr3} - \text{qr1})(\text{qr2} - \text{qr3})}- \frac{e^{i (\text{qr2} - \text{qr1})} - 1}{- (\text{qr3} - \text{qr1})(\text{qr2} - \text{qr1})} \right). $$ ## 6. A more symmetric form The original expression $$ e^{i \text{qr1}} \left(\frac{e^{i (\text{qr3} - \text{qr1})} (e^{i (\text{qr2} - \text{qr3})} - 1)}{- (\text{qr3} - \text{qr1})(\text{qr2} - \text{qr3})}- \frac{e^{i (\text{qr2} - \text{qr1})} - 1}{- (\text{qr3} - \text{qr1})(\text{qr2} - \text{qr1})}\right). $$ Factor out $- (\text{qr3} - \text{qr1})(\text{qr2} - \text{qr3})(\text{qr2} - \text{qr1})$ as the denominator, yielding: $$ \frac{e^{i \text{qr1}} \big[ e^{i (\text{qr3} - \text{qr1})} (e^{i (\text{qr2} - \text{qr3})} - 1) (\text{qr2} - \text{qr1})- (e^{i (\text{qr2} - \text{qr1})} - 1) (\text{qr2} - \text{qr3}) \big]}{- (\text{qr3} - \text{qr1})(\text{qr2} - \text{qr3})(\text{qr2} - \text{qr1})}. $$ $$ =\frac{\big[ (e^{i (\text{qr2})} - e^{i (\text{qr3})}) (\text{qr2} - \text{qr1})- (e^{i (\text{qr2})} - e^{i (\text{qr1})}) (\text{qr2} - \text{qr3}) \big]}{- (\text{qr3} - \text{qr1})(\text{qr2} - \text{qr3})(\text{qr2} - \text{qr1})}. $$ The numerator terms can now be reorganized - The expression has a natural cyclic dependence on $\text{qr1}, \text{qr2}, \text{qr3}$. - Using the symmetry of exponential terms, you can observe that each vertex contributes a term involving the phase difference with the other two vertices. The symmetric form of the result is: $$ \frac{e^{i \text{qr3}} (\text{qr1} - \text{qr2}) + e^{i \text{qr1}} (\text{qr2} - \text{qr3}) + e^{i \text{qr2}} (\text{qr3} - \text{qr1})}{(\text{qr1} - \text{qr2})(\text{qr2} - \text{qr3})(\text{qr3} - \text{qr1})}. $$ ## 7. The final expression $$ \int_{\text{triangle}} e^{i (\mathbf{q} \cdot \mathbf{r})} \, dA = |\mathbf{n}| \cdot \frac{e^{i \text{qr3}} (\text{qr1} - \text{qr2}) + e^{i \text{qr1}} (\text{qr2} - \text{qr3}) + e^{i \text{qr2}} (\text{qr3} - \text{qr1})}{(\text{qr1} - \text{qr2})(\text{qr2} - \text{qr3})(\text{qr3} - \text{qr1})}. $$ <!-- ## 8. Test the Scattering Amplitude for a Disk To derive the scattering amplitude for a disk, we approximate the disk as a collection of pie-shaped triangles. By summing the contributions of individual triangles and transitioning to a continuous limit, we compute the scattering amplitude. To derive $F(q, \alpha)$, the scattering amplitude of a disk on the $xy$-plane with radius $R$, using the given triangle integration formula: $$ \int_{\text{triangle}} e^{i (\mathbf{q} \cdot \mathbf{r})} \, dA = |\mathbf{n}| \cdot \frac{ e^{i \text{qr3}} (\text{qr1} - \text{qr2}) + e^{i \text{qr1}} (\text{qr2} - \text{qr3}) + e^{i \text{qr2}} (\text{qr3} - \text{qr1}) }{ (\text{qr1} - \text{qr2})(\text{qr2} - \text{qr3})(\text{qr3} - \text{qr1})}, $$ we follow these steps: ### 8.1. Disk Geometry and Wave Vector Setup The disk lies in the $xy$-plane, and the wave vector $\mathbf{q}$ forms an angle $\alpha$ with the $z$-axis. Let: $$ \mathbf{q} = (q_x, q_y, q_z) = (q \sin\alpha \cos\phi_q, q \sin\alpha \sin\phi_q, q \cos\alpha), $$ where $q = |\mathbf{q}|$ is the magnitude of the wave vector and $\phi_q$ is the azimuthal angle of $\mathbf{q}$. The disk is approximated as $N$ pie-shaped triangles: - The center of the disk is $\mathbf{r}_1 = (0, 0, 0)$, - The vertices on the circumference are: $$ \mathbf{r}_2 = (R \cos\theta, R \sin\theta, 0), $$ $$ \mathbf{r}_3 = (R \cos(\theta + \Delta\theta), R \sin(\theta + \Delta\theta), 0), $$ where $\Delta\theta = \frac{2\pi}{N}$. ### 8.2. Dot Products $\text{qr1}$, $\text{qr2}$, and $\text{qr3}$ The dot products are computed as: 1. $\text{qr1} = \mathbf{q} \cdot \mathbf{r}_1 = 0$, 2. $\text{qr2} = \mathbf{q} \cdot \mathbf{r}_2 = q_x R \cos\theta + q_y R \sin\theta$, 3. $\text{qr3} = \mathbf{q} \cdot \mathbf{r}_3 = q_x R \cos(\theta + \Delta\theta) + q_y R \sin(\theta + \Delta\theta)$. In polar coordinates for $\mathbf{q}$, substituting $q_x = q \sin\alpha \cos\phi_q$ and $q_y = q \sin\alpha \sin\phi_q$, we find: $$ \text{qr2} = q R \sin\alpha \cos(\theta - \phi_q), $$ $$ \text{qr3} = q R \sin\alpha \cos(\theta + \Delta\theta - \phi_q). $$ ### 8.3. Triangle Area and Normal Vector The area of each triangle: $$ |\mathbf{n}| = \frac{1}{2} R^2 \Delta\theta. $$ ### 8.4. Contribution of a Single Triangle Substituting $\text{qr1}$, $\text{qr2}$, and $\text{qr3}$ into the formula, the contribution from one triangle becomes: $$ \int_{\text{triangle}} e^{i (\mathbf{q} \cdot \mathbf{r})} \, dA \approx \frac{1}{2} R^2 \Delta\theta \cdot \frac{ e^{i \text{qr3}} (\text{qr1} - \text{qr2}) + e^{i \text{qr1}} (\text{qr2} - \text{qr3}) + e^{i \text{qr2}} (\text{qr3} - \text{qr1}) }{ (\text{qr1} - \text{qr2})(\text{qr2} - \text{qr3})(\text{qr3} - \text{qr1})}. $$ ### 8.5. Transition to Continuous Limit In the limit as $N \to \infty$ ($\Delta\theta \to 0$), the disk's scattering amplitude is the sum of contributions from all triangles: $$ F(q, \alpha) = \int_{\text{disk}} e^{i (\mathbf{q} \cdot \mathbf{r})} \, dA. $$ Switching to polar coordinates: - $\mathbf{r} = (r \cos\theta, r \sin\theta, 0)$, - $\mathbf{q} \cdot \mathbf{r} = q r \sin\alpha \cos(\theta - \phi_q)$. Thus: $$ F(q, \alpha) = \int_0^{2\pi} \int_0^R e^{i q r \sin\alpha \cos(\theta - \phi_q)} \, r \, dr \, d\theta. $$ ### 8.6. Evaluate the Radial Integral The radial integral is: $$ \int_0^R r e^{i q r \sin\alpha \cos(\theta - \phi_q)} \, dr. $$ Using the result for $\int_0^R r e^{i a r} \, dr$: $$ \int_0^R r e^{i a r} \, dr = \frac{e^{i a R} - 1}{a^2} - \frac{i R e^{i a R}}{a}, $$ where $a = q \sin\alpha \cos(\theta - \phi_q)$. ### 8.7. Evaluate the Angular Integral The angular integral becomes: $$ \int_0^{2\pi} e^{i q r \sin\alpha \cos(\theta - \phi_q)} \, d\theta = 2\pi J_0(q r \sin\alpha), $$ where $J_0(x)$ is the Bessel function of the first kind. ### 8.8. Final Expression Substituting back into the full expression: $$ F(q, \alpha) = 2\pi \int_0^R r J_0(q r \sin\alpha) \, dr. $$ The integral of $r J_0(x)$ gives: $$ \int_0^R r J_0(q r \sin\alpha) \, dr = \frac{R^2 J_1(q R \sin\alpha)}{q R \sin\alpha}. $$ Thus, the scattering amplitude for the disk is: $$ F(q, \alpha) = 2\pi R^2 \frac{J_1(q R \sin\alpha)}{q R \sin\alpha}. $$ **Fournet (1949) Expression of Cylinder:** $$ F(q, \alpha) = 2 (\Delta \rho) V \cdot \frac{\sin \left(\tfrac12 qL\cos\alpha \right)} {\tfrac12 qL \cos \alpha} \cdot \frac{J_1 \left(q R \sin \alpha\right)}{q R \sin \alpha}. $$ Both results coincide when $L \rightarrow 0$. --> --- # II. Tetrahedron Volume Element To evaluate the integral of $\exp(i(\mathbf{q} \cdot \mathbf{r}))$ over the tetrahedron defined by vertices $\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, \mathbf{r}_4$ in 3D space, we follow a similar approach to the triangle case. ## 1. **Setup and Parametrization of the Tetrahedron** The integral is: $$ \int_{\text{tetrahedron}} e^{i (\mathbf{q} \cdot \mathbf{r})} \, dV, $$ where $\mathbf{r}$ lies within the tetrahedron. Using barycentric coordinates, any point $\mathbf{r}$ inside the tetrahedron can be expressed as: $$ \mathbf{r}(u, v, w) = (1-u-v-w)\mathbf{r}_1 + u\mathbf{r}_2 + v\mathbf{r}_3 + w\mathbf{r}_4, $$ where $u, v, w \geq 0$ and $u+v+w \leq 1$. The differential volume element $dV$ is proportional to the determinant of the vectors forming the tetrahedron: $$ dV = |\mathbf{n}| \, du \, dv \, dw, $$ where $|\mathbf{n}| = 6V$, and $V$ is the volume of the tetrahedron: $$ V = \frac{1}{6} \left| \det\left([\mathbf{r}_2 - \mathbf{r}_1, \mathbf{r}_3 - \mathbf{r}_1, \mathbf{r}_4 - \mathbf{r}_1]\right) \right|. $$ ## 2. **Integration** Substitute the parametrization of \(\mathbf{r}\) into $\exp(i (\mathbf{q} \cdot \mathbf{r}))$: $$ \mathbf{q} \cdot \mathbf{r}(u, v, w) = (1-u-v-w)(\mathbf{q} \cdot \mathbf{r}_1) + u(\mathbf{q} \cdot \mathbf{r}_2) + v(\mathbf{q} \cdot \mathbf{r}_3) + w(\mathbf{q} \cdot \mathbf{r}_4). $$ Define: $$ \text{qr1} = \mathbf{q} \cdot \mathbf{r}_1, \quad \text{qr2} = \mathbf{q} \cdot \mathbf{r}_2, \quad \text{qr3} = \mathbf{q} \cdot \mathbf{r}_3, \quad \text{qr4} = \mathbf{q} \cdot \mathbf{r}_4. $$ Then: $$ \mathbf{q} \cdot \mathbf{r}(u, v, w) = \text{qr1} + u(\text{qr2} - \text{qr1}) + v(\text{qr3} - \text{qr1}) + w(\text{qr4} - \text{qr1}). $$ The integral becomes: $$ \int_{\text{tetrahedron}} e^{i (\mathbf{q} \cdot \mathbf{r})} \, dV = |\mathbf{n}| \int_0^1 \int_0^{1-u} \int_0^{1-u-v} e^{i (\text{qr1} + u(\text{qr2} - \text{qr1}) + v(\text{qr3} - \text{qr1}) + w(\text{qr4} - \text{qr1}))} \, dw \, dv \, du. $$ ## 3. **Simplify the Exponential** Factorize the exponential: $$ e^{i \text{qr1}} \int_0^1 \int_0^{1-u} \int_0^{1-u-v} e^{i \big(u(\text{qr2} - \text{qr1}) + v(\text{qr3} - \text{qr1}) + w(\text{qr4} - \text{qr1})\big)} \, dw \, dv \, du. $$ Perform the integration over \(w\), then \(v\), and finally \(u\), following the sequence of nested integrals. ## 4. **Evaluate the $w$-Integral** The \(w\)-dependent term is: $$ \int_0^{1-u-v} e^{i w (\text{qr4} - \text{qr1})} \, dw = \frac{e^{i (1-u-v)(\text{qr4} - \text{qr1})} - 1}{i (\text{qr4} - \text{qr1})}. $$ ## 5. **Evaluate the $v$-Integral** The result of the \(v\)-integration involves substituting the \(w\)-integral: $$ \int_0^{1-u} e^{i v (\text{qr3} - \text{qr1})} \cdot \frac{e^{i (1-u-v)(\text{qr4} - \text{qr1})} - 1}{i (\text{qr4} - \text{qr1})} \, dv. $$ Solve this using the same technique, applying the formula for the integral of an exponential. ## 6. **Evaluate the $u$-Integral** The \(u\)-integral similarly involves the result of the \(v\)-integration: $$ \int_0^1 e^{i u (\text{qr2} - \text{qr1})} \cdot \text{(result from \(v\)-integration)} \, du. $$ ## 7. **Final Expression** After evaluating all integrals, the final result is: $$ \int_{\text{tetrahedron}} e^{i (\mathbf{q} \cdot \mathbf{r})} \, dV = |\mathbf{n}| \cdot \frac{\text{(cyclic sum of terms involving \(e^{i \text{qr}}\))}}{\prod_{1 \leq i < j \leq 4} (\text{qr}_i - \text{qr}_j)}. $$ The integral of $\exp(i (\mathbf{q} \cdot \mathbf{r}))$ over the tetrahedron defined by the vertices $\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, \mathbf{r}_4$ can be expressed as: $$ \int_{\text{tetrahedron}} e^{i (\mathbf{q} \cdot \mathbf{r})} \, dV = |\mathbf{n}| \cdot \frac{\text{Numerator}}{\text{Denominator}}, $$ where the **Denominator** is: $$ \text{Denominator} = (\text{qr1} - \text{qr2})(\text{qr1} - \text{qr3})(\text{qr1} - \text{qr4})(\text{qr2} - \text{qr3})(\text{qr2} - \text{qr4})(\text{qr3} - \text{qr4}), $$ and the **Numerator** is the cyclic sum of contributions from all vertices: $$ \text{Numerator} = e^{i \text{qr1}} \big[ (\text{qr2} - \text{qr3})(\text{qr3} - \text{qr4})(\text{qr4} - \text{qr2}) \big] $$ $$+ e^{i \text{qr2}} \big[ (\text{qr3} - \text{qr4})(\text{qr4} - \text{qr1})(\text{qr1} - \text{qr3}) \big] $$ $$+ e^{i \text{qr3}} \big[ (\text{qr4} - \text{qr1})(\text{qr1} - \text{qr2})(\text{qr2} - \text{qr4}) \big] $$ $$+ e^{i \text{qr4}} \big[ (\text{qr1} - \text{qr2})(\text{qr2} - \text{qr3})(\text{qr3} - \text{qr1}) \big]. $$ This result is symmetric under any permutation of the vertices, as expected for a tetrahedron. Each term in the numerator captures the cyclic contributions of the vertices to the integral, similar to the result for the triangle but generalized for four vertices. We can write a general formula for the integral of $\exp(i(\mathbf{q} \cdot \mathbf{r}))$ over a $D$-dimensional simplex defined by vertices $\mathbf{r}_1, \dots, \mathbf{r}_{D+1}$ in 3D space. Let’s derive the general pattern for $D = 0, 1, 2, 3$: --- # **General Form** For a $D$-dimensional simplex: $$ \int_{\text{simplex}} e^{i (\mathbf{q} \cdot \mathbf{r})} \, dV_D = |\mathbf{n}| \cdot \frac{\text{Numerator}}{\text{Denominator}}, $$ where: - **Denominator**: The product of pairwise differences of the $\text{qr}_i = \mathbf{q} \cdot \mathbf{r}_i$: $$ \text{Denominator} = \prod_{1 \leq i < j \leq D+1} (\text{qr}_i - \text{qr}_j). $$ - **Numerator**: A cyclic sum over all vertices: $$ \text{Numerator} = \sum_{k=1}^{D+1} e^{i \text{qr}_k} \prod_{\substack{j=1 \\ j \neq k}}^{D+1} (\text{qr}_j - \text{qr}_\ell)_{j, \ell \neq k}. $$ - **Magnitude**: $|\mathbf{n}|$ accounts for the volume scaling: - For $D = 0$: $|\mathbf{n}| = 1$. - For $D = 1$: $|\mathbf{n}| = \| \mathbf{r}_2 - \mathbf{r}_1 \|$. - For $D = 2$: $|\mathbf{n}| = 2 \times \text{Area of triangle} = \| (\mathbf{r}_2 - \mathbf{r}_1) \times (\mathbf{r}_3 - \mathbf{r}_1) \|$. - For $D = 3$: $|\mathbf{n}| = 6 \times \text{Volume of tetrahedron} = |\det([\mathbf{r}_2 - \mathbf{r}_1, \mathbf{r}_3 - \mathbf{r}_1, \mathbf{r}_4 - \mathbf{r}_1])|$. --- ### **Explicit Results for $D = 0, 1, 2, 3$** #### **0D: Point** For $D = 0$, a single vertex $\mathbf{r}_1$: $$ \int_{\text{point}} e^{i (\mathbf{q} \cdot \mathbf{r})} \, dV_0 = e^{i \text{qr}_1}. $$ #### **1D: Line Segment** For $D = 1$, a line segment defined by $\mathbf{r}_1, \mathbf{r}_2$: $$ \int_{\text{line}} e^{i (\mathbf{q} \cdot \mathbf{r})} \, dV_1 = |\mathbf{n}| \cdot \frac{e^{i \text{qr}_2} - e^{i \text{qr}_1}}{\text{qr}_1 - \text{qr}_2}, $$ where $|\mathbf{n}| = \| \mathbf{r}_2 - \mathbf{r}_1 \|$. #### **2D: Triangle** For $D = 2$, a triangle defined by $\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3$: $$ \int_{\text{triangle}} e^{i (\mathbf{q} \cdot \mathbf{r})} \, dV_2 = |\mathbf{n}| \cdot \frac{e^{i \text{qr}_3} (\text{qr}_1 - \text{qr}_2) + e^{i \text{qr}_1} (\text{qr}_2 - \text{qr}_3) + e^{i \text{qr}_2} (\text{qr}_3 - \text{qr}_1)}{(\text{qr}_1 - \text{qr}_2)(\text{qr}_2 - \text{qr}_3)(\text{qr}_3 - \text{qr}_1)}, $$ where $|\mathbf{n}| = 2 \times \text{Area of the triangle} = \| (\mathbf{r}_2 - \mathbf{r}_1) \times (\mathbf{r}_3 - \mathbf{r}_1) \|$. #### **3D: Tetrahedron** For $D = 3$, a tetrahedron defined by $\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, \mathbf{r}_4$: $$ \int_{\text{tetrahedron}} e^{i (\mathbf{q} \cdot \mathbf{r})} \, dV_3 = |\mathbf{n}| \cdot \frac{\text{Numerator}}{\text{Denominator}}, $$ where: $$ \text{Denominator} = (\text{qr}_1 - \text{qr}_2)(\text{qr}_1 - \text{qr}_3)(\text{qr}_1 - \text{qr}_4)(\text{qr}_2 - \text{qr}_3)(\text{qr}_2 - \text{qr}_4)(\text{qr}_3 - \text{qr}_4), $$ and: $$ \text{Numerator} = e^{i \text{qr}_1} (\text{qr}_2 - \text{qr}_3)(\text{qr}_3 - \text{qr}_4)(\text{qr}_4 - \text{qr}_2)+ e^{i \text{qr}_2} (\text{qr}_3 - \text{qr}_4)(\text{qr}_4 - \text{qr}_1)(\text{qr}_1 - \text{qr}_3) $$ $$+ e^{i \text{qr}_3} (\text{qr}_4 - \text{qr}_1)(\text{qr}_1 - \text{qr}_2)(\text{qr}_2 - \text{qr}_4)+ e^{i \text{qr}_4} (\text{qr}_1 - \text{qr}_2)(\text{qr}_2 - \text{qr}_3)(\text{qr}_3 - \text{qr}_1). $$ Here, $|\mathbf{n}| = 6 \times \text{Volume of the tetrahedron}$. <!-- ![image](https://hackmd.io/_uploads/B1CmJT1Qyg.png) ![stars](https://hackmd.io/_uploads/HJANfBG71e.png) --> # Degenerate cases ## 2-D Triangle $$ J_2=e^{i\text{qr1}} \int_0^1 \int_0^{1-u} e^{i \big(u(\text{qr2} - \text{qr1}) + v(\text{qr3} - \text{qr1})\big)} \, dv \, du. $$ $$ = e^{i\text{qr1}} \int_0^1 e^{iu\Delta_{21}} \int_0^{1-u} e^{i v\Delta_{31}} \, dv \, du. $$ $$ = e^{i\text{qr1}} \int_0^1 e^{iu\Delta_{21}} \frac{e^{i(1-u)\Delta_{31}}-1}{i\Delta_{31}} \, du. $$ $$ = e^{i\text{qr1}}\big[ \frac{e^{i \Delta_{31}}}{i \Delta_{31}}\int_0^1 e^{iu(\Delta_{21}-\Delta_{31})} \, du-\frac{1}{i \Delta_{31}}\int_0^1 e^{iu\Delta_{21}} \, du.\big] $$ $$ = e^{i\text{qr1}}\big[ \frac{e^{i \Delta_{31}}}{i \Delta_{31}} \frac{e^{i(\Delta_{21}-\Delta_{31})}-1}{i(\Delta_{21}-\Delta_{31})}-\frac{1}{i \Delta_{31}}\frac{e^{i\Delta_{21}}-1}{i\Delta_{21}}\big] $$ $$ = e^{i\text{qr1}}\big[ \frac{e^{i \Delta_{31}}}{i \Delta_{31}} \frac{e^{i\Delta_{23}}-1}{i\Delta_{23}}-\frac{1}{i \Delta_{31}}\frac{e^{i\Delta_{21}}-1}{i\Delta_{21}}\big] $$ $$ = \frac{e^{\text{qr2}}-e^{\text{qr3}}}{i \Delta_{31}i\Delta_{23}} -\frac{e^{\text{qr2}}-e^{\text{qr1}}}{i \Delta_{31}i\Delta_{21}} $$ $$ = \frac{\Delta_{12}e^{\text{qr3}}+\Delta_{23}e^{\text{qr1}}+\Delta_{31}e^{\text{qr2}}}{\Delta_{12}i\Delta_{23}\Delta_{31}} $$ --- For $\Delta_{21}=\Delta_{31}=0$ $$ J_2 = e^{i\text{qr1}} \int_0^1 \int_0^{1-u} \, dv \, du. $$ $$ = \frac{e^{i\text{qr1}}}{2} $$ --- For $\Delta_{21}=0$ $$ J_2= e^{i\text{qr1}} \int_0^1 \int_0^{1-u} e^{i v\Delta_{31}} \, dv \, du. $$ $$ = e^{i\text{qr1}} \int_0^1 \frac{e^{i(1-u)\Delta_{31}}-1}{i\Delta_{31}} \, du. $$ $$ = e^{i\text{qr1}}\big[ \frac{e^{i \Delta_{31}}}{i \Delta_{31}} \frac{e^{i\Delta_{23}}-1}{i\Delta_{23}}-\frac{1}{i \Delta_{31}}\big] $$ $$ = e^{i\text{qr1}}\big[ \frac{1-e^{i \Delta_{31}}-i \Delta_{31}}{i^2 \Delta_{31}^2} \big] $$ $$ =\frac{e^{i\text{qr3}}-e^{i\text{qr1}}-ie^{i\text{qr1}}\Delta_{31}}{\Delta_{31}^2} $$ ## 3-D Tetrahedron $$ J_{3} = |\mathbf{n}| \int_0^1 \int_0^{1-u} \int_0^{1-u-v} e^{i (\text{qr1} + u(\text{qr2} - \text{qr1}) + v(\text{qr3} - \text{qr1}) + w(\text{qr4} - \text{qr1}))} \, dw \, dv \, du. $$ Let $s=qr2-qr1$, $t=qr3-qr1$, $r=qr4-qr1$. Considering the following integral $$ J_{3} =Je^{i\text{qr1}} = e^{i\text{qr1}}\int_0^1 e^{i u s} \left( \int_0^{1-u} e^{i v t} \left( \int_0^{1-u-v} e^{i w r} \, dw \right) dv \right) du $$ evaluates to: $$ J = \frac{i}{r (r - t) t} \left( \frac{e^{i t} r}{s - t} + \frac{e^{i r} t}{r - s} + \frac{e^{i s} r (r - t) t}{s (s - t) (r - s)} + \frac{-r + t}{s} \right). $$ **Case 1. $r=0$** The integral reduces to: $$ J = \int_0^1 e^{i u s} \left( \int_0^{1-u} e^{i v t} \left( \int_0^{1-u-v} 1 \, dw \right) dv \right) du, $$ which evaluates to: $$ J = \frac{-i s^2 (-1 + e^{i t} - i t) + i (-1 + e^{i s}) t^2 + s t^2}{s^2 (s - t) t^2}. $$ **Case 2. $r=0$ and $t=0$** The integral simplifies to: $$ J = \int_0^1 e^{i u s} \left( \int_0^{1-u} \left( \int_0^{1-u-v} 1 \, dw \right) dv \right) du, $$ which evaluates to: $$ J = \frac{i}{2} \cdot \frac{-2 + 2 e^{i s} + s(-2i + s)}{s^3}. $$ **Case 3. $r=0$ and $s=t$, $s\neq 0$** The integral simplifies to: $$ J = \int_0^1 e^{i u s} \left( \int_0^{1-u} e^{i v s} \left( \int_0^{1-u-v} 1 \, dw \right) dv \right) du, $$ Same as case 2. $$ J = \frac{i}{2} \cdot \frac{-2 + 2 e^{i s} + s(-2i + s)}{s^3}. $$ Case 4. $s=0$ and $t=0$ and $r=0$ $$ J = \int_0^1 \left( \int_0^{1-u} e^{i v s} \left( \int_0^{1-u-v} 1 \, dw \right) dv \right) du, $$ $$ J = \frac{1}{6}. $$