## 測試排版: * 程式碼並排測試一 (會隨螢幕寬度彈性縮放): <div style="display: flex; flex-wrap: wrap; gap: 20px;"> <div style="flex: 1"> Python範例: ```python import time import pandas as pd def greet(name): print(f"Hello, {name}!") greet("Alice") ``` </div> <div style="flex: 1"> SQL範例: ```sql create table schema.table ( col1 integer, col2 varchar(100) ); select * from table; select col1, col2 from schema.table; ``` </div> <div style="flex: 1"> Java Script範例: ```javascript function greet(name) { console.log(`Hello, ${name}!`); } greet("Alice"); ``` </div> </div> --- * 程式碼並排測試二 (不會隨螢幕寬度彈性縮放): <div style="display: flex; gap: 20px;"> <div style="flex: 1"> Python範例: ```python import time import pandas as pd def greet(name): print(f"Hello, {name}!") greet("Alice") ``` </div> <div style="flex: 1"> SQL範例: ```sql create table schema.table ( col1 integer, col2 varchar(100) ); select * from table; select col1, col2 from schema.table; ``` </div> <div style="flex: 1"> Java Script範例: ```javascript function greet(name) { console.log(`Hello, ${name}!`); } greet("Alice"); ``` </div> </div> --- * 程式碼並排測試三 (限制程式碼區塊的高度與寬度,並啟用捲軸): <div style="display: flex; gap: 20px;"> <div style="flex: 1; width: 100%; height: 200px; overflow: auto; background: #f9f9f9; padding: 10px;"> Python範例: ```python import time import pandas as pd def greet(name): print(f"Hello, {name}!") greet("Alice") ``` </div> <div style="flex: 1; width: 100%; height: 200px; overflow: auto; background: #f9f9f9; padding: 10px;"> SQL範例: ```sql create table schema.table ( col1 integer, col2 varchar(100) ); select * from table; select col1, col2 from schema.table; ``` </div> <div style="flex: 1; width: 100%; height: 200px; overflow: auto; background: #f9f9f9; padding: 10px;"> Java Script範例: ```javascript function greet(name) { console.log(`Hello, ${name}!`); } greet("Alice"); ``` </div> </div> --- * 程式碼並排測試四 (目前使用的樣板,僅限制寬度,並啟用捲軸): <div style="display: flex; flex-wrap: wrap; gap: 20px;"> <div style="flex: 1 1 500px; overflow: auto; padding: 10px;"> SQL 範例 1: ```sql select col1, col2, col3 from table where key1 = 'value1' and key2 = 'value2' and col1 between 1 and 1000 order by col1, col2; ``` </div> <div style="flex: 1 1 500px; overflow: auto; padding: 10px;"> Python 方法 1-1:資料來源為 CSV 檔案,且使用 pandas ```python import pandas as pd # 讀取整個 CSV 檔案 # 可加上 usecols=['col1', 'col2', 'col3'] 限制讀取欄位,或加上 encoding='utf-8-sig' 設定編碼,並建議加上:dtype=str, low_memory=False df = pd.read_csv('table.csv') # 篩選符合條件的列,選取特定欄位,並依 col1 與 col2 排序 result = df.loc[(df['key1'] == 'value1') & (df['key2'] == 'value2') & df['col1'].between(1, 1000)][['col1', 'col2', 'col3']].sort_values(by=['col1', 'col2']) print(result) # print(df.loc[(df['key1'] == 'A') & (df['key2'] == 'I'), 'col1']) # 取出滿足該條件的 col1 欄位 ``` </div> <div style="flex: 1 1 500px; overflow: auto; padding: 10px;"> Python 方法 1-2:資料來源為 CSV 檔案,且使用原生 Python 結構 (list[dict]) ```python import csv with open('table.csv', newline='') as csvfile: # 可加上 encoding='utf-8-sig' 設定編碼 reader = csv.DictReader(csvfile) # 篩選條件:key1 = 'value1' 且 key2 = 'value2' 且 col1 between 1 and 1000 filtered = [ {'col1': row['col1'], 'col2': row['col2'], 'col3': row['col3']} for row in reader if row['key1'] == 'value1' and row['key2'] == 'value2' and int(row['col1']) >= 1 and int(row['col1']) &lt;= 1000 ] # 排序依 col1, col2 result = sorted(filtered, key=lambda x: (x['col1'], x['col2'])) print(result) ``` </div> </div> ---