含阻力之自由落體 === ###### tags:`physics` ### Question 1 試證明$\tanh^{-1}\,\theta=\int_{0}^{\theta}\frac{dx}{1-x^2}$ #### Answer $$ \text{let}\,x=\tanh\,t\\ \Rightarrow \frac{dx}{dt}=\frac{\cosh^2\,t-\sinh^2\,t}{\cosh^2\,t}\\ =1-\tanh^2\,t\\ =1-x^2\\ \frac{dx}{1-x^2}=dt\\ \therefore \int\frac{dx}{1-x^2}=t+C\\ =\tanh^{-1}\,x+C\\ \Rightarrow \int_{0}^{\theta}\frac{dx}{1-x^2}=[\tanh^{-1}\,x]_0^\theta\\ =\tanh^{-1}\,\theta $$ ### Question 2 一個物體質量m,從空中自由落下,且其所受空氣阻力和其速率v的平方成正比。試求該物體下落速度之方程式。 #### Answer 首先假設阻力$f=kv^2$ 設速度向上為正 則物體之下落之微分方程可表示為 $$ F=m\frac{dv}{dt}=kv^2-mg $$(因為是自由落體,因此阻力恆向上) $$ \frac{dv}{dt}=\frac{k}{m}v^2-g\\ \Rightarrow \frac{dv}{\frac{k}{m}v^2-g}=dt $$ 令$u=\sqrt{\frac{k}{mg}}v$ 則 $$ \begin{align*} du&=\sqrt{\frac{k}{mg}}dv \Rightarrow &dv&=\sqrt{\frac{mg}{k}}du\\ u^2&=\frac{k}{mg}v^2 \Rightarrow &gu^2&=\frac{k}{m}v^2 \end{align*} $$ 因此 $$ \frac{\sqrt{\frac{mg}{k}}du}{gu^2-g}=dt\\ -\frac{\sqrt{\frac{mg}{k}}du}{g-gu^2}=dt\\ \sqrt{\frac{m}{kg}}\int \frac{du}{1-u^2}=-\int dt\\ \tanh^{-1}u=-\sqrt{\frac{kg}{m}}t+C\\ (\because v(0)=0\Rightarrow u(0)=0 \therefore C=0)\\ u=\tanh(-\sqrt{\frac{kg}{m}}t+C)\\ (\because v(0)=0\Rightarrow u(0)=0 \therefore C=0)\\ \therefore v=\sqrt{\frac{mg}{k}}\tanh(-\sqrt{\frac{kg}{m}}t)=-\sqrt{\frac{mg}{k}}\tanh(\sqrt{\frac{kg}{m}}t) $$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up