###### tags: `fiche` `S1` `maths` <div style="display: flex; justify-content: space-between;"> <span>Version 1.0.0</span> <span>2020/12/03</span> </div> <div style="height:25em"></div> <div style="text-align:center"> <h1 style="font-size:3.5em;line-height: 2.5;">S1 Maths - Gauss Lemma : Cours</h1> <div> Adam Alani <a href="mailto:adam.alani@epita.fr">&lt;adam.alani@epita.fr&gt;</a> <br> </div> </div> <div style="height:25em"></div> ---- [TOC] ---- # 1. Property Let $(a, b, c) \in \mathbb Z^3$ $$ a | bc, gcd(a , b) = 1 \implies a | c $$w ## 1.1. Demo $\exists (u , v) \in \mathbb Z^2 , au + bv = 1,$ $$ \begin{align} a | bc &\implies \exists k \in \mathbb Z | bc = ka \\ acu + bcv = c &\implies acu + kav = c \\ &\implies a( cu + kv) = c ⇒ a | c \end{align} $$