###### tags: `fiche` `S1` `maths` <div style="display: flex; justify-content: space-between;"> <span>Version 1.0.0</span> <span>2020/12/04</span> </div> <div style="height:25em"></div> <div style="text-align:center"> <h1 style="font-size:3.5em;line-height: 2.5;">S1 Maths - Fermat's Little Theorem : Cours</h1> <div> Adam Alani <a href="mailto:adam.alani@epita.fr"><adam.alani@epita.fr></a> <br> </div> </div> <div style="height:25em"></div> ---- [TOC] ---- # 1. Property Let $p$ be a prime number $\in \mathbb Z$ We have: $a^p \equiv a [p]$ ## 1.1 Corollary: Let $p$ be a prime number, $a \in Z$ such that $gcd(p , a) = 1$ Example $8^{30} \equiv 1[31]$ $8^{31-1} \equiv 8^{30}$ and 31 is a prime number then $gcd(31, 8) = 1$ Hence: $8^{31-1} \equiv 1[31]$ $8^{31} \equiv 8[31]$ ## 1.2. Demo $p$ a prime number, $a \in z$ and $gcd ( a , p) = 1$ $$ \begin{align} &\iff a^p \equiv a[p] \\ &\iff p | a^p - a \\ &\iff p | a(a^{p-1} - 1) \text { and } gcd(a , p) = 1 \text{ ( gauss) } \\ &\iff p | a^{p-1} \equiv 0[0] \\ &\iff a^{p-1} \equiv 1[p] \\ \end{align} $$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up