###### tags: `fiche` `S1` `maths` <div style="display: flex; justify-content: space-between;"> <span>Version 1.1.0</span> <span>2020/11/22</span> </div> <div style="height:25em"></div> <div style="text-align:center"> <h1 style="font-size:3.5em;line-height: 2.5;">S1 Maths - Arithmetics in R[x] : Cours</h1> <div> Adam Alani <a href="mailto:adam.alani@epita.fr">&lt;adam.alani@epita.fr&gt;</a> <br> Jules Lefebvre <a href="mailto:jules.lefebvre@epita.fr">&lt;jules.lefebvre@epita.fr&gt;</a> </div> </div> <div style="height:25em"></div> ---- [TOC] ---- # 1. Polynomial Let $\mathbb K$ a corps, $\forall n \in \mathbb N , (a_0 , ... , a_n) \in \mathbb K^{n+1}$ A polynomial is an expression of the form: $$ P(X) = a_0 + a_1X + \cdots + a_nX^n \\ = \sum_{i=0}^{n} a_iX^i $$ A polynomial is defined by its coefficients $(a_0, \cdots , a_n)$. Formally, a polynomial is defined as a sequence with a finite number of non-null terms corresponding to the coefficients $(a_0 , \dots , a_n)$ ## 1.1. Notations $\mathbb K[x]$ is the set of polynomials with $\mathbb K$ coefficients. $$ \mathbb K[x] = \{P(X) = \} $$ ## 1.2. Example $\mathbb R[X]$ is the sel of all the polynomials with reel coefficents. $$ \begin{align} X^3 + 2X - 1 &\in \mathbb R[x] \\ \mathbb R[x] &\subset \mathbb C[x] \end{align} $$ # 2. Degree The degree of a polynomial is the highest of the degrees of its monomial (individual terms) with non-zero coefficients. It's denoted $d^\circ P$. $$ P(X) = \sum_{i=0}^n a_i X^n | a_n \ne 0 \implies d^\circ(P) = n $$ By convention $d^\circ(0) = -\infty$. This convention is useful to simplify the operations on polynomial's degrees. ### Examples $$ \begin{align} d^\circ(3) &= 0 \\ d^\circ(2x) &= 1\\ d^\circ((X+1)^2) &= 2 \end{align} $$ ## 2.1. Properties Let $(P, Q) \in (\mathbb R[X])^2, (\lambda, n) \in \mathbb R \times \mathbb N$ $$ \begin{align} d^\circ\left(\frac{dP}{dx}\right) &= \begin{cases} -\infty & \text{if } d^\circ(P) \le 1 \\ d^\circ(P) - 1 & \text{if } d^\circ(P) > 1 \end{cases} \\ \\ d^\circ(P+Q) &\begin{cases} = \max(d^\circ(P), d^\circ(Q)) & \text{if } d^\circ(P) \ne d^\circ(Q)\\ \le \max(d^\circ(P), d^\circ(Q)) & \text{if } d^\circ(P) = d^\circ(Q)\\ \end{cases} \\ \\ d^\circ(\lambda P) &= \begin{cases} -\infty & \text{if } \lambda = 0 \\ d^\circ(P) & \text{if } \lambda \ne 0 \\ \end{cases}\\ \\ d^\circ(P^n) &= d^\circ(P) \times n \\ \end{align} $$ ## 2.2. Notation $\mathbb R_n[x]$ is the set of all the polynome with a degree less or equal to $n$. $$ \mathbb R_n[x] = \{P \in \mathbb R[x] | d^\circ(P) \le n \} $$ ### Examples $$ \begin{align} (x+2)^3 \in \mathbb R_3[x] &\rightarrow \mathbb R_2[x] \subset \mathbb R_3[x] \\ X + 1 \in \mathbb R_3[x] &\rightarrow X^2 + i \not\subset\mathbb R_2[x] \\ X^4 \not\in \mathbb R_3[x] &\rightarrow \mathbb R_2[x] \subset \mathbb C_2[x] \end{align} $$ **Operations in R[x]** Let $(P , Q) \in R[x]^2$ such that $P = \sum_{k=0}^{n} a_kX^k \qquad Q = \sum_{k=0}^{n}b_kX^k$ Then we have: - $P = Q$ if and only if there exists k [| 0 , n |] , $a_k = b_k$ Useful to switch from an equation with polynomials to an equation with coefficients - $P + Q = Q + P = \sum_{k=0}^n (a_k +b_k) X^k \text{and} \\ (P + Q) + R = P + (Q+R)$ - $\lambda P = \sum \lambda_{k=0}^n a_k X^k$ - $(PQ)R = P(QR)$ - $P(Q+R) = PQ + PR$ Remark: Additions and multiplications are performed in a very intuitive way, but! you **MAY NOT divide polynomials!**