# Dynamical Simulation for Reputation Score ###### tags: `Retrievability Pinning` *Authors: Irene Giacomelli (Protocol Labs), Danilo Lessa Bernardineli (BlockScience)* :::info Up to date by August 2022 ::: Base Reference: [DRC Reputation Score Brainstorming](/8CSLDfKNSAyyl-OfEzOdDQ) - Simulation parameters - Time - Range: 12 weeks (84 days) - Granularity: daily - Metrics - a - Arrival process for new providers - $P(N_P+ \Delta N_P) = Binomial(N_{p, max} - N_P, p_P)$ - $N_{p, max} = a_1 (1 - e^{-a_2 t}) + bt + c$ - Guesses: - $a_1 = Unif(20, 20k)$ - Unita - $a_2 = Unif()$ - $p_p = \beta(1, 1)$ - Arrival process for new clients - $P(N_C+ \Delta N_C) = Binomial(N_{C, max} - N_C, p_C)$ - $N_{c, max} = a_1 (1 - e^{-a_2 t}) + bt + c$ - $a_2 = \frac{ln(2)}{HalfLife}$ - Guesses - $a_1 = Unif[10, 10k]$ - Unit: # of agents - $a_2 = Unif[3, 30]$ - Unit: day - $b = \mathcal{N}()$ - Unit: # of agents per day - $c = \mathcal{N}()$ - Unit: # of agents - $p_C = \beta(1, 1)$ - Arrival process for new deals - $\Delta N_D = N_C * \mathcal{N}(\mu_D, \sigma_D)$ - Guesses - $\mu_D = 0.1$ Deals-Day Per Client - $\sigma_D = 0.1$ Deals-Day Per Client - $\tau_D = \mathcal{N}(\mu_{D, \tau}, \sigma_{D, \tau})$ - Guesses - $\mu_{D,\tau}=30 d$ - $\sigma_{D,\tau}=20 d$