# Circle Group
The real (unit) circle $C$ is defined algebraically by
$$
C = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}.
$$
The definition only uses addition and multiplication, so it makes sense over any field.
For a field $\mathbb{F}$, we define the **$\mathbb{F}$-circle** as
$$
C(\mathbb{F}) = \{(x,y) \in \mathbb{F}^2 \mid x^2 + y^2 = 1\}.
$$
### Task
Using Sage, define $C(\mathbb{F}_p)$ for $p \equiv 3 \pmod{4}$
- Define $p$
```sage
p = 7
```
- Define $\mathbb{F}_p$
```sage
F = FiniteField(p)
```
- Define $C(\mathbb{F}_p)$
```sage
# Define empty set
C_Fp = []
# Loop over elements and add roots
for x in F:
for y in F:
if x^2 + y^2 == 1:
C_Fp.append((x, y))
```