# Circle Group The real (unit) circle $C$ is defined algebraically by $$ C = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}. $$ The definition only uses addition and multiplication, so it makes sense over any field. For a field $\mathbb{F}$, we define the **$\mathbb{F}$-circle** as $$ C(\mathbb{F}) = \{(x,y) \in \mathbb{F}^2 \mid x^2 + y^2 = 1\}. $$ ### Task Using Sage, define $C(\mathbb{F}_p)$ for $p \equiv 3 \pmod{4}$ - Define $p$ ```sage p = 7 ``` - Define $\mathbb{F}_p$ ```sage F = FiniteField(p) ``` - Define $C(\mathbb{F}_p)$ ```sage # Define empty set C_Fp = [] # Loop over elements and add roots for x in F: for y in F: if x^2 + y^2 == 1: C_Fp.append((x, y)) ```