--- title: (Docs) Dist-YOLO tags: Documentation --- {%hackmd theme-dark %} {%hackmd sMV2zv-CTsuIqnpb0hZLmA %} # [Documentation] Dist-YOLO Code can be downloaded here 👇 [Dist-YOLO: Fast Object Detection with Distance Estimation](https://gitlab.com/EnginCZ/yolo-with-distance) Paper -> https://www.mdpi.com/2076-3417/12/3/1354 ## Table of Contents * ⚙️ Create Environment ## ⚙️ Create Environment Use Anaconda to create environment. ```bash conda create -n [ENVNAME] ``` This repo is an extension from the [original](https://github.com/david8862/keras-YOLOv3-model-set) repo. Follow these steps to setup your environment: 1. Install requirements for Ubuntu 16.04/18.04 ```bash conda install python=3.6 sudo apt install python3-opencv imagemagick pip install Cython pip install -r requirements.txt # If you have no errors, congrats, you can skip these steps # My installation error -> "ERROR: Failed building wheel for onnx" # Follow article below to learn more: # https://bobbyhadz.com/blog/python-error-could-not-build-wheels-for-onnx # conda install -c conda-forge numpy protobuf libprotobuf # conda install -c conda-forge onnx # # Everything should be fine now, but test this to make sure: # pip install -r requirements.txt ``` 2. Download [Darknet](https://pjreddie.com/darknet/install/) ```bash git clone https://github.com/pjreddie/darknet.git cd darknet make # Test if darknet is correctly installed ./darknet # Output -> usage: ./darknet <function> ``` 3. Download YOLO models ```bash= wget -O weights/darknet53.conv.74.weights https://pjreddie.com/media/files/darknet53.conv.74 wget -O weights/darknet19_448.conv.23.weights https://pjreddie.com/media/files/darknet19_448.conv.23 wget -O weights/yolov3.weights https://pjreddie.com/media/files/yolov3.weights wget -O weights/yolov3-tiny.weights https://pjreddie.com/media/files/yolov3-tiny.weights wget -O weights/yolov3-spp.weights https://pjreddie.com/media/files/yolov3-spp.weights wget -O weights/yolov2.weights http://pjreddie.com/media/files/yolo.weights wget -O weights/yolov2-voc.weights http://pjreddie.com/media/files/yolo-voc.weights wget -O weights/yolov2-tiny.weights https://pjreddie.com/media/files/yolov2-tiny.weights wget -O weights/yolov2-tiny-voc.weights https://pjreddie.com/media/files/yolov2-tiny-voc.weights wget -O weights/yolov4.weights https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v3_optimal/yolov4.weights wget -O weights/yolo-fastest.weights https://github.com/dog-qiuqiu/Yolo-Fastest/raw/master/ModelZoo/yolo-fastest-1.0_coco/yolo-fastest.weights wget -O weights/yolo-fastest-xl.weights https://github.com/dog-qiuqiu/Yolo-Fastest/raw/master/ModelZoo/yolo-fastest-1.0_coco/yolo-fastest-xl.weights ``` 4. Install tensorflow and tensorboard ```bash pip install tensorflow==2.3.0 tensorboard==2.3.0 ``` 5. Convert DarkNet YOLO to Keras model ```bash= python tools/model_converter/convert.py cfg/yolov3.cfg weights/yolov3.weights weights/yolov3.h5 python tools/model_converter/convert.py cfg/yolov3-tiny.cfg weights/yolov3-tiny.weights weights/yolov3-tiny.h5 python tools/model_converter/convert.py cfg/yolov3-spp.cfg weights/yolov3-spp.weights weights/yolov3-spp.h5 python tools/model_converter/convert.py cfg/yolov2.cfg weights/yolov2.weights weights/yolov2.h5 python tools/model_converter/convert.py cfg/yolov2-voc.cfg weights/yolov2-voc.weights weights/yolov2-voc.h5 python tools/model_converter/convert.py cfg/yolov2-tiny.cfg weights/yolov2-tiny.weights weights/yolov2-tiny.h5 python tools/model_converter/convert.py cfg/yolov2-tiny-voc.cfg weights/yolov2-tiny-voc.weights weights/yolov2-tiny-voc.h5 python tools/model_converter/convert.py cfg/darknet53.cfg weights/darknet53.conv.74.weights weights/darknet53.h5 python tools/model_converter/convert.py cfg/darknet19_448_body.cfg weights/darknet19_448.conv.23.weights weights/darknet19.h5 python tools/model_converter/convert.py --yolo4_reorder cfg/yolov4.cfg weights/yolov4.weights weights/yolov4.h5 python tools/model_converter/convert.py cfg/yolo-fastest.cfg weights/yolo-fastest.weights weights/yolo-fastest.h5 python tools/model_converter/convert.py cfg/yolo-fastest-xl.cfg weights/yolo-fastest-xl.weights weights/yolo-fastest-xl.h5 ``` 6.
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up