# HW2.3
## Advection-Diffusion and N-S equation
---
- Advection-Diffusion equation
- N-S equation
- Compare
---
## Advection-Diffusion equation
---
## The equation
$\quad\quad
\dfrac{\partial u}{\partial t} +
u\,\dfrac{\partial u}{\partial x} = D\dfrac{\partial^2 u}{\partial x^2}$
- u: Thing we interesting
- D: The diffusion coefficient
---
## Derivation
- The general equation
$\quad\quad \dfrac{\partial u}{\partial t} =\mathbf{\nabla} \cdot (D \mathbf{\nabla} u) - \mathbf{\nabla} \cdot (\mathbf{v} u) + R$
$\mathbf{\nabla} \cdot (D \mathbf{\nabla} u)$:The diffusion term.
$\quad$$\mathbf{\nabla} \cdot (\mathbf{v} u)$:The convection term.
$\quad\quad\quad$ $R$:lose
$\quad\quad\quad$ v:The volcity flied
---
## assume
- D = constant
=> $\mathbf{\nabla} \cdot (D \mathbf{\nabla} u)=D\nabla^2u$
- incompressible flow
=>$\mathbf{\nabla} \cdot (\mathbf{v} u) = \mathbf{v}\cdot\nabla u$ + $u\nabla \cdot\mathbf{v}$
=>$\mathbf{\nabla} \cdot (\mathbf{v} u) = \mathbf{v}\cdot\nabla u$
- ignore $\mathbf{R}$
---
## We can get
- total
$\quad\quad \dfrac{\partial u}{\partial t} + \mathbf{v}\cdot\nabla u = D\nabla^2u$
- Only 1D
$\quad\quad
\dfrac{\partial u}{\partial t} +
\mathbf{u}\,\dfrac{\partial u}{\partial x} = D\dfrac{\partial^2 u}{\partial x^2}$
---
## N-S equation
---
## The equation
$\rho(\dfrac{\partial u}{\partial t}+u\,\dfrac{\partial u}{\partial x}+v\,\dfrac{\partial u}{\partial y}+w\,\dfrac{\partial u}{\partial z})=\\\rho g_x-\dfrac{\partial p}{\partial x}+\mu(\dfrac{\partial^2 u}{\partial x^2}+\dfrac{\partial^2 u}{\partial y^2}+\dfrac{\partial^2 u}{\partial z^2})$
---
## Each term
##### $\quad\quad\quad\quad\quad\quad\quad\dfrac{\partial u}{\partial t}$:Unsteady acceleration
##### $u\,\dfrac{\partial u}{\partial x}+v\,\dfrac{\partial u}{\partial y}+w\,\dfrac{\partial u}{\partial z}$:Convective acceleration
##### $\quad\quad\quad\quad\quad\quad\quad\quad g_x$:gravity
##### $\quad\quad\quad\quad\quad\quad\quad-\dfrac{\partial p}{\partial x}$:Pressure gradient
##### $\mu(\dfrac{\partial^2 u}{\partial x^2}+\dfrac{\partial^2 u}{\partial y^2}+\dfrac{\partial^2 u}{\partial z^2})$:Viscosity
---
## compare
---
- Describe different things
- variable
- meth tern
---
## only 1D
$\quad
\dfrac{\partial u}{\partial t} +
u\,\dfrac{\partial u}{\partial x} = D\dfrac{\partial^2 u}{\partial x^2}$
$(\dfrac{\partial u}{\partial t}+{u}\,\dfrac{\partial u}{\partial x})=\dfrac{\mu}{\rho}(\dfrac{\partial^2 u}{\partial x^2}+\rho g_x-\dfrac{\partial p}{\partial x})$
---
$\quad\quad\quad\quad\quad\quad$N-s:$\mathbf{u}\cdot\nabla\mathbf{u}$
Advection-Diffusion:$\mathbf{v}\cdot\nabla u$
{"metaMigratedAt":"2023-06-15T00:03:58.685Z","metaMigratedFrom":"Content","title":"HW2.3","breaks":true,"contributors":"[{\"id\":\"6e1a3c05-784c-4acb-8ee3-9eae7e62bab8\",\"add\":3082,\"del\":434}]"}