## 1. Install CUDA and CUDNN check your CUDA and CUDNN version compatibility of your personal computer Suggest: CUDA >= 10.0, CUDNN >= 7.5 建議上網找跟自己相同或是差不多電腦規格(CPU, GPU)的人安裝成功的對應版本 Reference: https://medium.com/ching-i/win10-%E5%AE%89%E8%A3%9D-cuda-cudnn-%E6%95%99%E5%AD%B8-c617b3b76deb ## 2. Download Visual Studio version: Win11 SDK for Visual Studio 2022(17) Win10 SDK for Visual Studio 2019(16) 確保有安裝Visual Studio Installer到本地端 Install "Desktop development with C++" 如果要下載舊版(2019)需加入微軟的一個計劃才能免費安裝 Reference: https://visualstudio.microsoft.com/zh-hant/downloads/ ## 3. Download Cmake 由於GitHub上的OpenCV Sources只有最基本的函式庫跟功能,因此需要透過Cmake自己build需要的OpenCV函式庫 Reference: https://cmake.org/download/ ## 4. Download OpenCV Sources and OpenCV Contrib download version: 4.7.0 OpenCV Sources: https://opencv.org/releases/ OpenCV Contrib: https://github.com/opencv/opencv_contrib 兩個下載並解壓縮完後,新增一個空的資料夾命名為build,將三者放在同一個路徑下 ## 5. Run Cmake - Source code path and where to build - select VS and generator(x64) - click WITH_CUDA, OPENCV_DNN_CUDA, ENABLE_FAST_MATH - select module folder in OpenCV-Contrib path on OPENCV_EXTRA_MODULES_PATH - configure again, click CUDA_FAST_MATH - check your compute capability with your GPU - select CUDA_ARCH_BIN and enter your version - configure again, then generate ## 6. Build OpenCV with CUDA - search build folder - use Visual Studio open "OpenCV.sln" - change debug mode to release mode - click build on ALL_BUILD in CMake Targets - click build on INSTALL in CMake Targets