<style>
/* reduce from default 48px, center: */
.reveal {
font-size: 24px;
text-align: left;
}
/* remove black border from images: */
.reveal section img {
border: 0;
box-shadow: none;
}
</style>
# Integration of Kitodo and OCR-D for Productive Mass-Digitisation
## OCR-D Phase 3 Kick-Off
#### Robert Sachunsky
#### July 29, 2021
---
## Implementation Project Kitodo / OCR-D
* Participants
* Sächsische Landesbibliothek –
Staats- und Universitätsbibliothek Dresden (SLUB)
* Universitätsbibliothek der TU Braunschweig (UBBS)
* Universitätsbibliothek Mannheim (UBMA)
* Volume: 8 man-years
* Duration: 2 years
* Start: October 2021
<div>
<span style="float:left;">

</span>
<span style="float:right;">

</span>
</div>
---
## Prior Work
* SLUB staff: OCR-D coordination / module project (2018/19)
* UBMA: OCR-D module project (2018/19)
* SLUB, UBMA: OCR-D pilot libraries (2019/20)
* SLUB: Kitodo development (since 2012)
* UBBS: Kitodo testing, documentation, migration
* all: experienced OCR-D and Kitodo users
---
## Premises
* Kitodo: Workflow Management System for libraries
* Open-source, community-driven
* Modules:
* Kitodo.Production (digitisation workflows)
* Kitodo.Presentation (DFG viewer etc.)
* OCR: only via commercial plugins (black box, license costs)
* OCR-D: operative single-workstation command-line prototype
* no network interfaces for distribution/scaling yet
* no error recovery and dynamic workflow execution yet
* no result quality estimation and runtime evaluation yet
* no assisted/automatic workflow configuration yet
---
## Goals (OCR-D)
1. Implement OCR-D as Web-based distributed system
- easily scalable <!-- (by adding computing resources / servers) -->
- easily deployable <!-- (via container virtualization) -->
2. Develop quality based workflow optimisation for OCR-D
- use **heuristics and models** for quality estimation of interim results
during preprocessing, segmentation and recognition
- **weight** interim result quality relative to contribution to overall result (follow-up steps, other pages)
- when insufficient, **switch** to alternative configuration for segment/page/document automatically, or **abort** computation
- offer a set of empirically **optimised**, dynamically quality-controlled workflow **configurations** for various materials
---
## Goals (Kitodo)
3. Implement OCR-D as OCR module in Kitodo.Production
- import images, meta-data and structure data
- track and visualise result progress/quality
- error handling, versioning
- export, validate and ingest results
- edit and manage workflow configurations
4. Extend Kitodo.Presentation and DFG Viewer
- user evaluation of results, versioning
- user prioritisation of (re-)OCR tasks (On-Demand-OCR)
---
## Goals (further)
- close collaboration with OCR-D coordination project
- cooperation with other OCR-D implementation/module projects
- Kitodo community workshops (disseminate and query requirements)
- Kitodo community OCR-D service (test operation)
---
## System Architecture
* Kitodo with OCR-D "backend" as distributed system
* strong integration of data and process management
* generic/agnostic on both sides

---
## Project Plan
- AP1 (SLUB): coordination and communication
- AP2 (UBBS): management of Kitodo community
- AP3 (SLUB): detailled technical specification
- AP4 (SLUB): OCR-D server implementation
- AP5 (SLUB): concept for automatic process control
- AP6 (SLUB): implement automatic process control
- AP7 (SLUB): develop quality estimation metrics & models
- AP8 (UBBS): set up OCR-D service for Kitodo community
- AP9 (SLUB): integrate OCR-D into Kitodo.Production
- AP10 (UBMA): integrate OCR-D into Kitodo.Presentation
- AP11 (UBMA): data storage, ingest and versioning
- AP12 (SLUB): run and test DFG Viewer with OCR on Demand
- AP13 (UBBS): evaluation and documentation with Kitodo community
---
## Synergies and Interfaces
- extending the processor CLI for error handling/signalling and parallelism
- molding the final OCR-D Web API
- providing reference implementations for server components
- providing reference implementations for module containers
- definining an evaluator CLI (analogous to processor CLI)
- generalising the OCR-D workflow format for evaluators and switches
- running & evaluating workflow experiments systematically
- compiling optimised workflow configurations
- defining quality metrics for workflow steps
---
## Q & A
Thank you!
{"metaMigratedAt":"2023-06-16T05:06:59.844Z","metaMigratedFrom":"YAML","title":"Integration of Kitodo and OCR-D for Productive Mass-Digitisation","breaks":true,"description":"OCR-D Phase 3 Kick-Off (presentation)","slideOptions":"{\"theme\":\"white\",\"slideNumber\":true}","contributors":"[{\"id\":\"c62f1b15-791a-47e1-8e4c-ab2ed00c04bc\",\"add\":7887,\"del\":2880}]"}