# Linear Algebra - Vector and Set of Vectors ## Linear Combination Given a set of vectors S, $S=\{u_1,u_2,...,u_n \}$, Linear combination of S is $$c_1u_1+c_2u_2+...+c_nu_n\text{ , such that }c_1,c_2,...,c_n\in\mathbb{R}$$ ## Span Span(S) is linear combiantion of S $$Span(S)=\{c_1u_1+c_2u_2+...+c_nu_n|c_1,c_2,...,c_n\in\mathbb{R}\}$$ ## How to show vector is in a span or not? Let's just took some examples. ### Example 1 :::info Given a span $S=\{ \left[ {\begin{array}{cc} 2\\0\\1\\ \end{array} } \right] ,\left[ {\begin{array}{cc} 1\\1\\0\\ \end{array}}\right]\}$, is vector $\vec{A}=\left[ {\begin{array}{cc} 0\\1\\0\\ \end{array}}\right]$ in the $span(S)$? ::: Ans: :::spoiler Again, to check if $\vec{B}$ is in span, we can check if there is a linear combination of $(2,0,1)$ and $(1,1,0)$ equals $\vec{B}$, we can list some equations down: \begin{cases} 2C_1+1C_2=0 \\ 0C_1+1C_2=1 \\ 1C_1+0C_2=0 \end{cases} Since $C_1=0$ and $C_2=0=1$ is impossible, $\vec{A} \notin Span(S)$ ::: ### Example 2 :::info Given a span $S=\{ \left[ {\begin{array}{cc} 2\\0\\1\\ \end{array} } \right] ,\left[ {\begin{array}{cc} 1\\1\\0\\ \end{array}}\right]\}$, is vector $\vec{B}=\left[ {\begin{array}{cc} 8\\2\\3\\ \end{array}}\right]$ in the $span(S)$? ::: Ans: :::spoiler Again, to check if $\vec{B}$ is in span, we can check if there is a linear combination of $(2,0,1)$ and $(1,1,0)$ equals $\vec{B}$, we can list some equations down: \begin{cases} 2C_1+1C_2=8 \\ 0C_1+1C_2=2 \\ 1C_1+0C_2=3 \end{cases} We can get that $C_1=3$ and $C_2=2$, such that$\vec{B}=3\left[ {\begin{array}{cc} 2\\ 0\\1\\ \end{array} } \right]+2\left[ {\begin{array}{cc} 1\\1\\0\\ \end{array}}\right]$. Therefore, $\vec{B} \in Span(S)$ ::: ## How about a span+vector? ### Example 1 :::info Given vectors $\vec{p}=\left[ {\begin{array}{cc} -1\\0\\0\\ \end{array} } \right] ,\vec{u_1}=\left[ {\begin{array}{cc} 2\\0\\1\\ \end{array} } \right] ,\vec{u_2}=\left[ {\begin{array}{cc} 1\\1\\0\\ \end{array}}\right]$, and $S=\{\vec{u_1}, \vec{u_2}\}$, is vector $\vec{A}=\left[ {\begin{array}{cc} 0\\1\\0\\ \end{array}}\right]$ in the $\vec{p}+span(S)$? ::: Ans: :::spoiler First of all, we can write down that $$\vec{A}=\vec{p}+C_1\vec{u_1}+C_2\vec{u_2}\rightarrow \vec{A}-\vec{p}=C_1\vec{u_1}+C_2\vec{u_2}$$ In this form, we can write down some equations again. $$ \begin{cases} 2C_1+1C_2=0-(-1) \\ 0C_1+1C_2=1-0 \\ 1C_1+0C_2=0-0 \end{cases}\rightarrow\begin{cases} 2C_1+1C_2=1 \\ 0C_1+1C_2=1 \\ 1C_1+0C_2=0 \end{cases} $$ We can get that $C_1=0$ and $C_2=1$, so $\vec{A}\in\vec{p}+Span(S)$ ::: ### Example 2 :::info Given vectors $\vec{p}=\left[ {\begin{array}{cc} -1\\0\\0\\ \end{array} } \right] ,\vec{u_1}=\left[ {\begin{array}{cc} 2\\0\\1\\ \end{array} } \right] ,\vec{u_2}=\left[ {\begin{array}{cc} 1\\1\\0\\ \end{array}}\right]$, and $S=\{\vec{u_1}, \vec{u_2}\}$, is vector $\vec{B}=\left[ {\begin{array}{cc} 8\\2\\3\\ \end{array}}\right]$ in the $\vec{p}+span(S)$? ::: Ans: :::spoiler Just like last problem, we can write down that $$\vec{B}=\vec{p}+C_1\vec{u_1}+C_2\vec{u_2}\rightarrow \vec{B}-\vec{p}=C_1\vec{u_1}+C_2\vec{u_2}$$ In this form, we can write down some equations again. $$ \begin{cases} 2C_1+1C_2=8-(-1) \\ 0C_1+1C_2=2-0 \\ 1C_1+0C_2=3-0 \end{cases}\rightarrow\begin{cases} 2C_1+1C_2=9 \\ 0C_1+1C_2=2 \\ 1C_1+0C_2=3 \end{cases} $$ Since $C_1=3$ and $C_2=2=3 is impossible$, $\vec{B}\notin\vec{p}+Span(S)$ :::