# Linear Algebra - Subspace ## Definition For all vector space,a subspace is a subset that is itself a vector space, under the inheriate operation. ## Lemma If $W$ is a vector space, $V\subseteq W$, $\forall$ $\vec{v},\vec{w}\in V, r\in V$ 1. $\vec{0}\in V$ 2. $\vec{v}+\vec{w}\in V$ 3. $r\vec{v}\in V$ ,then V is subspace of W. ## Determine whether it is a subspace of a vector space > $\mathbb{R}^2=span(\{\left[ {\begin{array}{} 1\\0 \end{array} } \right],\left[ {\begin{array}{} 0\\1 \end{array} } \right]\})$ ### Case 1 :::info $V=\emptyset$ (empty set). Is set V a subspace of $\mathbb{R}^2$? ::: Ans: :::spoiler V is not a subspace of $\mathbb{R}^2$ because $\vec{0}\notin V$, $V$ is not a vector sapce. ::: ### Case 2 :::info $V=\{\left[ {\begin{array}{} x\\y \end{array} } \right] \mid x+y\le 1\}$. Is set V a subspace of $\mathbb{R}^2$? ::: Ans: :::spoiler V is not a subspace of $\mathbb{R}^2$ because $\left[ {\begin{array}{} 1\\0 \end{array} } \right]+\left[ {\begin{array}{} 0\\1 \end{array} } \right]\notin V$, $V$ is not a vector sapce. ::: ### Case 3 :::info $V=\{\left[ {\begin{array}{} x\\y \end{array} } \right] \mid x+y=0\}$. Is set V a subspace of $\mathbb{R}^2$? ::: Ans: :::spoiler V is a subspace of $\mathbb{R}^2$ because $\vec{0}\in V$, $\vec{v}+\vec{w}\in V$, $r\vec{v}\in V$ and $V\in \mathbb{R}^2$ ::: ### Case 4 :::info $V=\{\left[ {\begin{array}{} x\\y \end{array} } \right] \mid x+y=1\}$. Is set V a subspace of $\mathbb{R}^2$? ::: Ans: :::spoiler V is not a subspace of $\mathbb{R}^2$ because $\left[ {\begin{array}{} 0\\0 \end{array} } \right]\notin V$, $V$ is not a vector sapce. ::: ### Case 5 :::info $V=\{\left[ {\begin{array}{} x\\y \end{array} } \right] \mid y>0\}$. Is set V a subspace of $\mathbb{R}^2$? ::: Ans: :::spoiler V is not a subspace of $\mathbb{R}^2$ because$\left[ {\begin{array}{} 0\\0 \end{array} } \right]\notin V$, $V$ is not a vector sapce. :::