# Probability # Basic ## Variance $Var(X)=E[X^2]-E[X]^2$ # Advance ## PMF v.s PDF v.s CDF ### PMF (Probability Mass function) A PMF is a mathematical function that gives the probability that a discrete random variable is exactly equal to a specific value. It is used in statistics to describe the distribution of discrete random variables. > $p(x) = P(X=x)$, $p(x)$ is PMF ### PDF (probability density function) PDF is a statistical term that describes the probability distribution of the continues random variable. > $F(x)=P(a\le x\le b)=\int^{b}_{a}f(x)dx$ > $F(x)=P(a\le x\le b)$ is the PDF We can know that $\rightarrow$ * $\int^{\infty}_{-\infty}f(x)dx=1$ * $E[g(X)]=\int^{\infty}_{-\infty}g(x)f_Xdx$ ### CDF (Cumulative distribution function) The cumulative distribution function is applicable for describing the distribution of random variables ***either it is continuous or discrete*** * $F_X(x)=P(X\le x)$ * for discreate random variable: * $F_X(x)=P(X\le x)=\sum^{x}_{-\infty}p(x)dx$ * the sum of PMF to $x$ * for continuous random variable: * $F_X(x)=P(X\le x)=\int^{x}_{-\infty}f(x)dx$ * the integral of PDF to $x$ ## Classic PDF ### Gaussian(Normal) Distribution | | | | -------- | -------- | | Definition | $\mathcal{N}(\mu, \sigma^2)=\frac{1}{\sqrt{2\pi \sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$| |$E[X]$|$\mu$| |$Var(X)$|$\sigma^2$| > A is a point that $(1,\sigma^2)$ that you can observe how it change <iframe src="https://www.geogebra.org/calculator/wedycqxx?embed" width="800" height="600" allowfullscreen style="border: 1px solid #e4e4e4;border-radius: 4px;" frameborder="0"></iframe> ## Joint PDF $P(X,Y)\in S=\int\int_Sf_{X,Y}(x,y)dxdy$