# Linear Algebra - Vector Space ## Definition for all vectors $\vec{u}$, $\vec{v}$, $\vec{w} \in V$, and $r$,$s\in\mathbb{R}$, if | rule | explain | rule |explain | | -------- | -------- | -------- |-------- | | $\vec{v}+\vec{w}\in V$| close under addition | $r\vec{v}\in V$ |close under miltiplication| |$r(\vec{v}+\vec{w}) = r\vec{v}+r\vec{w}$|distribute over vector addition|$(r+s)\vec{v} = r\vec{v}+s\vec{v}$|distribute over scalor addition| |$(\vec{v}+\vec{w})+\vec{u}=\vec{v}+(\vec{w}+\vec{u})$|associative|$(rs)\vec{v}=r(s\vec{v})$|associative| |$\vec{v}+\vec{w} = \vec{w}+\vec{v}$|commutative|$1\vec{v}=\vec{v}$|identity operation| |exist $\vec{w}\in V$, $\vec{w}+\vec{v}=0$|additive inverse|$\vec{0}\in V$|| ## Determine whether it is vector space ### Case 1 :::info $V=\{\left[ {\begin{array}{} x\\y \end{array} } \right]\mid x^2+y^2\le1\}$. Is set V a vector space? ::: Ans: :::spoiler V is not vector space because$\left[ {\begin{array}{} 1\\0 \end{array} } \right]+\left[ {\begin{array}{} 0\\1 \end{array} } \right]=\left[ {\begin{array}{} 1\\1 \end{array} } \right]\notin V$ ::: ### Case 2 :::info $V=\{\left[ {\begin{array}{} x\\y \end{array} } \right] \mid x+y=0\}$. Is set V a vector space? ::: Ans: :::spoiler V is a vector space because $\forall \vec{u}$, $\vec{v}$, $\vec{w} \in V$, and $r$,$s\in\mathbb{R}$ such that $\vec{v}+\vec{w}\in V$,$r\vec{v}\in V$, $\vec{v}+r\vec{w}$, $(r+s)\vec{v}=r\vec{v}+s\vec{v}$, $(\vec{v}+\vec{w})+\vec{u}=\vec{v}+(\vec{w}+\vec{u})$, $(rs)\vec{v}=r(s\vec{v})$, $\vec{v}+\vec{w} = \vec{w}+\vec{v}$, $1\vec{v}=\vec{v}$, exist $\vec{w}\in V$,$\vec{w}+\vec{v}=0$ and $\vec{0}\in V$ ::: ### Case 3 :::info $V=\{\left[ {\begin{array}{} x\\y \end{array} } \right] \mid x+y=1\}$. Is set V a vector space? ::: Ans: :::spoiler V is not vector space because$\left[ {\begin{array}{} 0\\0 \end{array} } \right]\notin V$ ::: ### Case 4 :::info $V=\{\left[ {\begin{array}{} x\\y \end{array} } \right] \mid y>0\}$. Is set V a vector space? ::: Ans: :::spoiler V is not vector space because$\left[ {\begin{array}{} 0\\0 \end{array} } \right]\notin V$ :::