# Linear Algebra - Systems of Linear Equations > We gonna expalin Linear Equations and its extentions, such as ker(),row(), pivot, leading variables & free variables ## Linear Equations In mathematics, a linear equation is an equation that may be put in the form $c_1x_1+c_2x_2...c_nx_n=a$, and $c_1,c_2...c_n$ are the coefficients, which are often real numbers. When there are a lot of equetions to slove we simply list them down. $$\begin{cases} c_{11}x_1+c_{12}x_2...c_{1n}x_n=a_1 \\ c_{21}x_1+c_{22}x_2...c_{2n}x_n=a_2 \\ \vdots\\ c_{n1}x_1+c_{n2}x_2...c_{nn}x_n=a_n \\ \end{cases}$$ Or more easily, wirte as a matrix A times a vector $\vec{x}$ equals $\vec{a}$. $$A\vec{x}=\vec{a}\rightarrow\left[ {\begin{array}{cc} c_{11} & c_{12} & ... & c_{1n}\\ c_{21} & c_{22} & ... & c_{2n}\\ \vdots & \vdots & \ddots & \vdots\\ c_{n1} & c_{n2} & ... & c_{nn}\\ \end{array} } \right]\left[ {\begin{array}{cc} x_1\\ x_2\\ \vdots\\ x_n \end{array} } \right]=\left[ {\begin{array}{cc} a_1\\ a_2\\ \vdots\\ a_n \end{array} } \right] \rightarrow \left[ {\begin{array}{cc} c_{11} & c_{12} & ... & c_{1n} & a_1\\ c_{21} & c_{22} & ... & c_{2n} & a_2\\ \vdots & \vdots & \ddots & \vdots\\ c_{n1} & c_{n2} & ... & c_{nn} & a_n\\ \end{array} } \right]$$ ## Row echelon form :::success * echelon : 階梯 ::: Then...How to solve a system of linear equations completely? Of course, We will use Gaussian Method(Which also a knowledge in high school), then we can get an row echelon form. ### Definition * All rows having only zero entries are at the bottom. * The leading entry (that is, the left-most nonzero entry) of every nonzero row, called the pivot, is on the right of the leading entry of every row above. for example: $$\left[ {\begin{array}{cc} 1 & a_0 & a_1 & a_2 & a_3\\ 0 & 0 & 2 & a_4 & a_5\\ 0 & 0 & 0 & 1 & a_6\\ 0 & 0 & 0 & 0 & 0\\ \end{array} } \right]$$ ### reduced row echelon form #### Definition * It is in row echelon form. * The leading entry in each nonzero row is 1 (called a leading one). * Each column containing a leading 1 has zeros in all its other entries. for example: $$\left[ {\begin{array}{cc} 1 & 0 & a_1 & 0 & b_1\\ 0 & 1 & a_2 & 0 & b_2\\ 0 & 0 & 0 & 1 & b_3\\ \end{array} } \right]$$ ## Ker ### Definition Given a matrix A, $ker(A)=\{\vec{x}\mid A\vec{x}=\vec{0}\}$ ### How to find ker(A) :::info Given matrix $A=\left[ {\begin{array}{cc} 4 & 1 & 24 & 19 & 1\\ 1 & 1 & 9 & 10 & 0\\ 2 & 0 & 10 & 6 & 1\\ \end{array} } \right]$, find $ker(A)$ ::: :::spoiler We know that $ker(A)=\{\vec{x}\mid A\vec{x}=\vec{0}\}$, let $\vec{x}=\left[ {\begin{array}{cc}x_1\\ x_2\\ x_3\\ x_4\\ x_5\end{array} }\right]$. We can list a linear equestion as: $$\begin{cases} 4\times x_1+1\times x_2+24\times x_3+19\times x_4+1\times x_5=0 \\ 1\times x_1+1\times x_2+9\times x_3+10\times x_4+0\times x_5=0 \\ 2\times x_1+0\times x_2+10\times x_3+6\times x_4+1\times x_5=0 \\ \end{cases} $$ $$\left[ {\begin{array}{cc} 4 & 1 & 24 & 19 & 1 & 0\\ 1 & 1 & 9 & 10 & 0 & 0\\ 2 & 0 & 10 & 6 & 1 & 0\\ \end{array} } \right] \rightarrow\left[ {\begin{array}{cc} 1 & 0 & 5 & 3 & 0 & 0\\ 0 & 1 & 4 & 7 & 0 & 0\\ 0 & 0 & 0 & 0 & 1 & 0\\ \end{array} } \right] \rightarrow\begin{cases} x_1=5(-x_3)+3(-x_4)\\x_2=4(-x_3)+7(-x_4)\\x_5=0 \end{cases}, x_3,x_4\in\mathbb{R}$$ $$ker(A)=\{\left[ {\begin{array}{cc} 5a+3b\\4a+7b\\a\\b\\0 \end{array} } \right]\mid a.b\in \mathbb{R}\}$$ ::: ## Row ### Definition Given a matrix $A=\left[ {\begin{array}{cc} \leftharpoonup r_1\rightharpoonup\\ \leftharpoonup r_2\rightharpoonup\\ \vdots\\ \leftharpoonup r_n\rightharpoonup\\ \end{array} } \right]$, $r_i$ is the row of matrix , $Row(A)=Span(\{r_1,r_2...r_n\})$ ## Col Given a matrix $A=\left[ {\begin{array}{} |&|&...&|\\u_1 & u_2 & ... & u_d\\|&|&...&| \end{array} } \right]$, $u_i$ is the volumn of matrix , $Col(A)=Span(\{u_1,u_2...u_n\})$ ## pivot, leading variables & free variables * **pivot**: the leading entry (that is, the left-most nonzero entry) of every nonzero row * **pivot position**: the position of the leading entry (that is, the left-most nonzero entry) of every nonzero row * **pivot column**: the column of the leading entry (that is, the left-most nonzero entry) of every nonzero row * **leading variables** : same as pivot column * **free variables** : the column that does not contain any pivot ![image](https://hackmd.io/_uploads/B1KeYx5eJx.png) ### rank #### Definition Given a matrix A, $rank(A)$ is the number of free variables ### null #### Definition Given a matrix A, $null(A)$ is the number of leading variables