# Linear Algebra - Matrix Operations ## Simple operations ### Matrix addition I think most of us learnt it in high school, so let's just give an example. :::info what is result of $\left[ {\begin{array}{cc} 1 & 2 & 3\\ 4 & 5 & 6 \\ \end{array} } \right]+ \left[ {\begin{array}{cc} 1 & 3 & 5\\ 2 & 4 & 6 \\ \end{array} } \right]$? ::: :::spoiler $\left[ {\begin{array}{cc} 2 & 5 & 8\\ 6 & 9 & 12 \\ \end{array} } \right]$ ::: ### Scalar Multiplication Same as previous point. :::info what is result of $5\left[ {\begin{array}{cc} 1 & 2 & 3\\ 4 & 5 & 6 \\ \end{array} } \right]$? ::: :::spoiler $\left[ {\begin{array}{cc} 5 & 10 & 15\\ 20 & 25 & 30 \\ \end{array} } \right]$ ::: ### Matrix-Matrix Multiplication Same as previous point. :::info what is result of $\left[ {\begin{array}{cc} 1 & 2 & 3\\ 4 & 5 & 6 \\ \end{array} } \right] \left[ {\begin{array}{cc} 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ \end{array} } \right]$? ::: :::spoiler $\left[ {\begin{array}{cc} 4 & 2\\ 10 & 5\\ \end{array} } \right]$ ::: ## Matrix Transpose In linear algebra, the transpose of a matrix is an operator which flips a matrix over its diagonal; that is, i**t switches the row and column indices of the matrix** A by producing another matrix. :::info what is result of $\left[ {\begin{array}{cc} 1 & 2 & 3\\ 4 & 5 & 6 \\ \end{array} } \right]^T$? ::: :::spoiler $\left[ {\begin{array}{cc} 1 & 4\\ 2 & 5\\ 3 & 6\\ \end{array} } \right]$ ::: ### symmetric matrix #### Defnition $A=A^T$, $A$ is a symmetric matrix. > For example: > $\left[ {\begin{array}{cc} 1 & 2 & 3\\ 2 & 5 & 4 \\ 3 & 4 & 6 \\ \end{array} } \right]^T=\left[ {\begin{array}{cc} 1 & 2 & 3\\ 2 & 5 & 4 \\ 3 & 4 & 6 \\ \end{array} } \right]$ ### skew-symmetric matrix $-A=A^T$, $A$ is a skew-symmetric matrix. > For example: > $A=\left[ {\begin{array}{cc} 0 & -2 & 3\\ 2 & 0 & 4 \\ -3 & -4 & 0 \\ \end{array} } \right]$ then, $A^T=\left[ {\begin{array}{cc} 0 & 2 & -3\\ -2 & 0 & -4 \\ 3 & 4 & 0 \\ \end{array} } \right]=-A$, so A is skew-symmetric matrix. * if $A^T=A=-A^T$, $A=0$ ### Express matrix in sum of symmetric matrix and skew-symmetric matrix symmetric matrix part : $\frac{1}{2}(A+A^T)$ skew-symmetric matrix part : $\frac{1}{2}(A-A^T)$ $A=\frac{1}{2}(A+A^T)+\frac{1}{2}(A-A^T)$ ## Linear Transformation ### Defnition A linear transformation is a function that maps one vector space to another while preserving the underlying linear structure of each vector space. > For example: > In vector space $\mathbb{R}^2$, we can implement linear transformation to rotate $\mathbb{R}^2$ counterclockwise through $\theta$ degree with matrix. > $\left[ {\begin{array}{cc} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta) \\ \end{array} } \right]x, x\in \mathbb{R}^2$. :::info rotate $\left[ {\begin{array}{cc} 0\\1 \end{array} } \right]$,$\left[ {\begin{array}{cc} 1\\0 \end{array} } \right]$,$\left[ {\begin{array}{cc} 3\\4 \end{array} } \right]$ counterclockwise through 90 degree with linear transformation matrix. ::: :::spoiler $\left[ {\begin{array}{cc} cos(\frac{\pi}{2}) & -sin(\frac{\pi}{2}) \\ sin(\frac{\pi}{2}) & cos(\frac{\pi}{2}) \\ \end{array} } \right]=\left[ {\begin{array}{cc} 0 & -1 \\ 1 & 0 \\ \end{array} } \right]$ $\left[ {\begin{array}{cc} 0 & -1 \\ 1 & 0 \\ \end{array} } \right]\left[ {\begin{array}{cc} 0 & 1 & 3 \\ 1 & 0 & 4\\ \end{array} } \right]=\left[ {\begin{array}{cc} -1 & 0 & -4 \\ 0 & 1 & 3\\ \end{array} } \right]$ ::: ### Elementary Matrix