--- tags: Calculus, 2022-Fall-CalculusI --- {%hackmd theme-dark %} # 極限、連續、微分大雜燴 ###### tags: `Calculus` `2022-Fall-CalculusI` ![](https://i.imgur.com/ui8lkdB.png) # 重要定理及其證明 ## 連續必極限 :::success **[Theorem]** $$f:\text{continuous at }x=a\Longrightarrow \lim_{x \to a}f(x): \text{exists}$$ Proof: $\because f : \text{cont. at } x = a, \ \therefore \text{by definition of continuity, the limit}\\ \text{exists and }f(a) \text{ exists, too.}\quad_\blacksquare$ 或是你要大喊"trivial!!",我也不能反駁你。 Warning: "$\Leftarrow$" 不能反推,也就極限存在不一定會連續。cex : $y=\frac{x^2-4}{x-2}$ ::: ## 微分必連續 :::success **[Theorem 2.8.4]** $$f:\text{differentiable at }x=a\Longrightarrow f:\text{continuous at }x=a$$ Proof: Note that $f : \text{diff. at } x = a$. Therefore, the following limit exists: $$\lim_{x\to a}{\frac{f(x)-f(a)}{x-a}}$$, say(令成是/叫做) $C \in \mathbb{R}$. Also, we have $\lim_{x\to a} (x-a)=0$. Hence, we have: $$\lim_{x\to a}f(x)=\lim_{x\to a}[(f(x)-f(a))+f(a)]=\lim_{x\to a}[(f(x)-f(a))]+\lim_{x\to a}f(a)$$$$=\lim_{x\to a}[\frac{f(x)-f(a)}{x-a}\cdot (x-a)]+f(a)=\lim_{x\to a}\frac{f(x)-f(a)}{x-a} \cdot \lim_{x\to a} (x-a)+f(a)$$$$=C \cdot 0 + f(a)=f(a)\qquad_\blacksquare$$ Warning: "$\Leftarrow$" 不能反推,cex : $y=|x|$ :::