---
title: Plotting with matplotlib
tags: Python Cheatbook
---
# Plotting with `matplotlib`
The general idea when plotting with `matplotlib` is that it is usually done in steps.
1. Initiaize plot, example `plt.scatter(x,y)` -- initialized within `plt`, there is no return object.
2. Configure the plot, example `plt.axis('off')`
3. Render the plot, example `plt.show()` ==always call it to view the plot==, alternative is to save the plot to a file instead with `plt.savefig(path)`. **Note** that calling `show` before `savefig` will result in a blank canvas.
## Scatter plots
```python=
import matplotlib.pyplot as plt
#create data
x = [25, 12, 15, 14, 19, 23, 25, 29]
y = [5, 7, 7, 9, 12, 9, 9, 4]
#create scatterplot
plt.scatter(x, y, s=200)
plt.show()
```
**Note**: plot shown below is *not* from example code above.

## General config of plots
Remove the ticks but keep the box
```python=
plt.tick_params(left=False, # remove left ticks
bottom=False, # remove bottom ticks
labelleft=False, # remove left labels
labelbottom=False) # remove bottom labels
plt.show()
```

Remove everything around the image or plot
```python
plt.axis('off')
```

Add a background image to the plot
```python=
img_path = './background.png'
plt.imshow(plt.imread(img_path), zorder=-1)
```
## References
1. https://www.statology.org/matplotlib-remove-ticks/
2. https://www.labri.fr/perso/nrougier/scientific-visualization.html -- open access book on scientific visualizations.