--- title: Plotting with matplotlib tags: Python Cheatbook --- # Plotting with `matplotlib` The general idea when plotting with `matplotlib` is that it is usually done in steps. 1. Initiaize plot, example `plt.scatter(x,y)` -- initialized within `plt`, there is no return object. 2. Configure the plot, example `plt.axis('off')` 3. Render the plot, example `plt.show()` ==always call it to view the plot==, alternative is to save the plot to a file instead with `plt.savefig(path)`. **Note** that calling `show` before `savefig` will result in a blank canvas. ## Scatter plots ```python= import matplotlib.pyplot as plt #create data x = [25, 12, 15, 14, 19, 23, 25, 29] y = [5, 7, 7, 9, 12, 9, 9, 4] #create scatterplot plt.scatter(x, y, s=200) plt.show() ``` **Note**: plot shown below is *not* from example code above. ![](https://i.imgur.com/KPejmz4.png) ## General config of plots Remove the ticks but keep the box ```python= plt.tick_params(left=False, # remove left ticks bottom=False, # remove bottom ticks labelleft=False, # remove left labels labelbottom=False) # remove bottom labels plt.show() ``` ![](https://i.imgur.com/8AXN1u5.png) Remove everything around the image or plot ```python plt.axis('off') ``` ![](https://i.imgur.com/nteZD5D.png) Add a background image to the plot ```python= img_path = './background.png' plt.imshow(plt.imread(img_path), zorder=-1) ``` ## References 1. https://www.statology.org/matplotlib-remove-ticks/ 2. https://www.labri.fr/perso/nrougier/scientific-visualization.html -- open access book on scientific visualizations.