# 機器學習 {%hackmd @themes/dracula %} ## 課程概要 This course offers a comprehensive introduction to machine learning. Students will understand the theoretical foundations of machine learning algorithms and gain hands-on experience implementing them using Python and TensorFlow. Through real-world applications, students will demonstrate their ability to apply machine learning algorithms to solve practical problems. ## 課程資訊 - **課程編號/代碼**: 4117 - **學分數**: 3 - **上課地點**: S821 - **授課教師**: 楊景明 - **聯絡方式**: - **課程時間**: [周1 678](/NzV-a9tGRX-__mPE58OdLQ) ## 目標 1. Understand the theoretical foundations of machine learning algorithms. 2. Implement machine learning algorithms using Python and TensorFlow. 3. Apply machine learning algorithms to real-world problems. ## 課程內容 <!-- undo to write --> | week | task | | ------ |:------------------------------------------------------------------------------ | | 第1週 | [What is Machine Learning](/z22e-7r-SLKN9aDQHlZsvg) | | 第2週 | [End-to-End Machine Learning Task](/JOgy4n8NT5GB4C9E1Ty3jQ) | | 第3週 | [Classification](/0fKPwVJSTAqVqwRvC1s9AA) | | 第4週 | [Regression](/uUM_D_UFSN6_mClhGr7JuQ) | | 第5週 | [Gradient Descent](/uUM_D_UFSN6_mClhGr7JuQ) | | 第6週 | Holiday Week | | 第7週 | [Support Vector Machine](/ji56kq2dStmfxuxVg0jsYw) | | 第8週 | [Decision Tree](/tgD5d8ziR3OBHMPubDHdZw) | | 第9週 | Midterm Exam | | 第10週 | [Ensemble Learning and Random Forest](/Bc8PwYttQ6aO2cuks9Z9Sw)(第一次段考結束) | | 第11週 | [Data Preprocessing](/uC-3H-ecQiG87gbgDppLxQ) | | 第12週 | [Dimensionality Reduction](/jwXzd_q2TWuKS7LvxqZpvA) | | 第13週 | [Reading Assignment (Self-learning Week)](/4ZBJnEGxTm-mof-a73KloQ) | | 第14週 | [Unsupervised Learning](/-7Vhk_idTsGHlm_-Fqe5lw) | | 第15週 | [Deep Learning and Neural Network](/xf4Tf3NrT6S4a46qUpX-WQ) | | 第16週 | [RNN](/_staIQQlQQKO-4X25WT5Uw) [CNN](/yORYhXWLSy-p0N8Cj81U1w) [GAN](/35sXaZ7aSgCM09kiAj4U7w) | | 第17週 | Final Exam | | 第18週 | Reading Assignment (Self-learning Week) | ## 評估 - Reading report (20%) 70 - Midterm exam (20%) 74 - Final exam (30%) - Classroom performance (30%) 70
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up