# Seatwork: Rules of Asymptotic Notation ### Questions Which complexity class do these functions belong to? Write the complexity class in terms of $\Theta$. 1. $3n^2+40n-5$ 2. $8n+6n+log_3n$ 3. $log_5 n + 6 log_3 n$ 4. $log_5n+\sqrt{n}$ 5. $8log_3{(log_3 n)} + log_5n$ 6. $2n + 2^n + 50 n^3$ 7. $2^7 + n^2 + 50n^3$ 8. $nlog_2 n + 5n$ 9. $6n + 3n^2 + 4$ 10. $4 + 5\sqrt{n} + \sqrt[3]{n^2}$ 11. $2(log_5 n)^2 + 8n^{\frac{2}{3}}$ ### Answers 1. Quadratic or $\Theta(n^2)$ 2. Linear or $\Theta(n)$ 3. Polylog or $\Theta(logn)$ 4. Fractional Power or $\Theta(n^{\frac{1}{2}})$ 5. Polylog or $\Theta(logn)$ 6. Exponential or $\Theta(2^{n})$ 7. Polynomial or $\Theta(n^{3})$ 8. Loglinear or $\Theta(nlogn)$ 9. Quadratic or $\Theta(n^{2})$ 10. Fractional Power or $\Theta(n^{\frac{2}{3}})$ 11. Fractional Power or $\Theta(n^{\frac{2}{3}})$ **Limit Solution for number 11** $$ \begin{align*} &= \lim_{n \to \infty }\frac{2(\log_{5}n)^{2}}{8n^{\frac{2}{3}}}\\ &= \lim_{n \to \infty }\frac{4\log_{5}n\left(\frac{1}{nln5}\right) }{\frac{2}{3}8n^{-\frac{1}{3}}}\\ &= \lim_{n \to \infty }\frac{4\log_{5}n}{\frac{16}{3}n^{\frac{2}{3}}ln5}\\ &= \lim_{n \to \infty }\frac{\frac{1}{nln5}}{\frac{2}{3}\cdot \frac{4}{3}n^{-\frac{1}{3}}ln5}\\ &=\lim_{n \to \infty } \frac{n^{\frac{1}{3}}}{\frac{8}{9}n(ln5)^{2}}\\ &=\lim_{n \to \infty } \frac{1}{{\frac{8}{9}n^{\frac{2}{3}}(ln5)^{2}}}\\ &= 0 \end{align*} $$ Therefore the denominator is more complex and is more dominant.