Math 181 Miniproject 3: Texting Lesson.md --- My lesson Topic === <style> body { background-color: #eeeeee; } h1 { color: skyblue; margin-left: 40px; } .gray { margin-left: 50px ; margin-right: 29%; font-weight: 500; color: #000000; background-color: #cccccc; border-color: #aaaaaa; } .blue { display: inline-block; margin-left: 29% ; margin-right: 0%; width: -webkit-calc(70% - 50px); width: -moz-calc(70% - 50px); width: calc(70% - 50px); font-weight: 500; color: #fff; border-color: #336699; background-color: #337799; } .left { content:url("https://i.imgur.com/rUsxo7j.png"); width:50px; border-radius: 50%; float:left; } .right{ content:url("https://i.imgur.com/5ALcyl3.png"); width:50px; border-radius: 50%; display: inline-block; vertical-align:top; } </style> <div id="container" style=" padding: 6px; color: #fff; border-color: #336699; background-color: #337799; display: flex; justify-content: space-between; margin-bottom:3px;"> <div> <i class="fa fa-envelope fa-2x"></i> </div> <div> <i class="fa fa-camera fa-2x"></i> </div> <div> <i class="fa fa-comments fa-2x"></i> </div> <div> <i class="fa fa-address-card fa-2x" aria-hidden="true"></i> </div> <div> <i class="fa fa-phone fa-2x" aria-hidden="true"></i> </div> <div> <i class="fa fa-list-ul fa-2x" aria-hidden="true"></i> </div> <div> <i class="fa fa-user-plus fa-2x" aria-hidden="true"></i> </div> </div> <div><img class="left"/><div class="alert gray"> So... what exactly is this assignment? it looks tricky. </div></div> <div><div class="alert blue"> The question is to consider the function, $f\left(x\right)=5x^{2}+2x+10$ and using only the limit definition of the derivative, find the exact formula for f'(x) </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> Okay, so how do I start? </div></div> <div><div class="alert blue"> To start, you need to know the formula for the limit definition of the derivative f'(x) of a function f(x) </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> I see, and what is that formula? </div></div> <div><div class="alert blue"> The formula of the limit definition of a derivative is $$f'\left(x\right)=\lim_{h→0}\ \frac{\left[f\left(x+h\right)-f\left(x\right)\right]}{h}$$ this is something that you just need to memorize. </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> Alright, what next? </div></div> <div><div class="alert blue"> Once you have the formula down, you can plug in the function we were given into the limit definition function $$f'\left(x\right)=\lim_{h→0}\ \frac{\left[\left[5\left(x+h\right)^{2}+2\left(x+h\right)+10\right]-\left[5x^{2}+2x+10\right]\right]}{h}$$ After plugging in the function, factor and simplify the numerator and cancel out like terms if possible $$f'\left(x\right)=\lim_{h→0}\frac{\left[5x^{2}+10xh+5h^{2}+2x+2h+10-5x^{2}-2x-10\right]}{h}$$ in this numerator, the $5x^2$, 2x, and 10 cancel out leaving the formula $$f'\left(x\right)=\lim_{h→0}\ \frac{\left(10xh+5h^{2}+2h\right)}{h}$$ then you can factor out and h from the numerator to simplify further $$f'\left(x\right)=\lim_{h→0}\ \frac{h\left(10x+5h+2\right)}{h}$$ then you can cancel out the h from the front of the numerator and the h in the denominator, this will leave the final function $$f'\left(x\right)=\lim_{h→0}\ 10x+5h+2$$ once you have the final simplified function, you can plug in 0 for all of the h values since you are finding the limit as h approaches 0. This gives you: $$10x+5\left(0\right)+2$$ or $$10x+2$$ so, the answer for the formula of f'(x) is $$f'(x)=10x+2$$ using this formula you can plug in any value for x to find the limit of the function $f(x)=5x^2+2x+10$ </div><img class="right"/></div> <div><img class="left"/><div class="alert gray"> Oh, I see now. Thank you! </div></div> </div></div> <div><div class="alert blue"> You're welcome! </div><img class="right"/></div> --- To submit this assignment click on the Publish button ![Publish button icon](https://i.imgur.com/Qk7vi9V.png). Then copy the url of the final document and submit it in Canvas.