# Johnson & Busemeyer (2016) risky choice $(x_1,p_1;x_2,p_2;x_3,p_3)$ 1. prior attention vetor $z=[z_1,z_2,z_3]^T$ 2. transient matrix (3×3) $Q$ 3. absorbing matrix $R$ $$ R = \left[ \begin{matrix}{} p_1 & 0 & 0 \\ 0 & p_2 & 0 \\ 0 & 0 & p_3 \end{matrix} \right] $$ Attention $W = z(I-Q)^{-1}R$ > Absorbing Markov chain: > 1) there exists at least an state $j$ that $p_{jj}=1$ (absorbing state) > 2) From every state it is possible to reach an absorbing state (no necessarily in one step) > > Let $b_{ij}$ be the probability that an absorbing chain will be absorbed in the absorbing state $j$ if it starts in the transient state $i$. Then: > $$b_{ij}=p_{ij}+\sum_{k} p_{ik}b_{ik} \Longrightarrow B = R + QB \Longrightarrow B = (I-Q)^{-1}R$$ >