# Astro Hack Week 2019課程筆記 ## 8/26 Data Visualization ### 簡介 (by [Ellianna Abrahams](https://elliesch.github.io/)) * [簡報](https://github.com/AstroHackWeek/AstroHackWeek2019/blob/master/day1_dataviz/ahw2019_dataviz_slides.pdf) * 資料視覺化的重要性:科學家用圖表發現資料間的關聯,並用圖表向大眾解釋其研究發現 * 有些圖表讓人很快就了解其意涵,有些則否。補充:[Pre-Attentive processing](https://en.wikipedia.org/wiki/Pre-attentive_processing) * 練習: 給其他人看自己做的圖表, 詢問他們很快就能辨識出圖表資訊是來自哪部份 * [How to Make Your Charts More Accessible with Color Blind Friendly Palettes](https://venngage.com/blog/color-blind-friendly-palette/) * 分組練習: 從[dataviz_exercise](https://github.com/AstroHackWeek/AstroHackWeek2019/tree/master/day1_dataviz/dataviz_exercise)選一張圖,討論如何改進讓圖的資訊更容易傳達 ### 程式示範 (by [Thomas Robitaille](http://www.thomasrobitaille.com/)) * [Jupyter notebook講義](https://github.com/AstroHackWeek/AstroHackWeek2019/blob/master/day1_dataviz/visualization_tools.ipynb) * Python的視覺化工具 * [PyViz - Python tools for data visualization](https://pyviz.org/) * [Matplotlib](https://matplotlib.org/) * [seaborn: statistical data visualization](https://seaborn.pydata.org/) * [Altair: Declarative Visualization in Python](https://altair-viz.github.io/) * [pywwt: WorldWide Telescope from Python](https://pywwt.readthedocs.io/en/stable/) * [Glue: multi-dimensional linked-data exploration](http://glueviz.org/) * [vaex](https://docs.vaex.io/en/latest/) ## 8/27 Software Development * [簡報](https://github.com/AstroHackWeek/AstroHackWeek2019/blob/master/day2_software/AHW2019_Day2_SE.pdf) (by [Brigitta Sipocz](https://github.com/bsipocz), [Erik Tollerud](http://www.stsci.edu/~etollerud/) and [Thomas Robitaille](http://www.thomasrobitaille.com/)) ### Pull Requests and Reviewing Code * [Jupyter notebook講義(含練習)](https://github.com/AstroHackWeek/AstroHackWeek2019/blob/master/day2_software/prs_and_reviewing.ipynb) * 練習:在GitHub上fork講師預先準備的GitHub repo.到自己的帳號下,該repo.中有待修正改進的程式碼,先用git branch指令開分支修正問題,然後向原本的repo.提交修正(pull request)。 * 練習: review別人的pull request,如果通過,則會將別人的修正合併回原本的repo.的主分支。 ### Python packaging * [Jupyter notebook講義(含練習)](https://github.com/AstroHackWeek/AstroHackWeek2019/blob/master/day2_software/packaging.ipynb) * 練習:用GitHub開個新專案(加入README檔、授權條款檔案) * 練習:將自己的專案包成Python套件,並發佈到PyPI平台,讓別人容易安裝 * 可參考[Python Packaging Guide](https://packaging.python.org/guides/tool-recommendations/)及[Astropy package template](https://docs.astropy.org/projects/package-template/) ### Code Documentation * [Jupyter notebook講義(含練習)](https://github.com/AstroHackWeek/AstroHackWeek2019/blob/master/day2_software/documentation.ipynb) * 練習:針對自己開發的函式、類別、模組、套件加入說明(用途、需要輸入的參數、會回傳什麼...) * 練習:利用Python套件[Sphinx](http://www.sphinx-doc.org/en/master/)製作專案的說明文件 ### Code testing and continuous integration * [Jupyter notebook講義(含練習)](https://github.com/AstroHackWeek/AstroHackWeek2019/blob/master/day2_software/testing_and_CI.ipynb) * 程式加入新功能時,自動化測試之前的功能是否還能運作 ## 8/27 Querying surveys & data Management ### Querying with Astroquery * [Jupyter notebook講義(含練習)](https://github.com/AstroHackWeek/AstroHackWeek2019/blob/master/day2_software/Querying%20with%20Astroquery.ipynb) ### Data Management * [Jupyter notebook講義(含練習)](https://github.com/AstroHackWeek/AstroHackWeek2019/blob/master/day2_software/data_management.ipynb) ## 8/28 - 29 Machine Learning & Bayesian Inference ### Bayesian Inference * [簡報](https://github.com/AstroHackWeek/AstroHackWeek2019/blob/master/day3_bayes/AHW_2019_Bayes.pdf) * [Jupyter notebook講義1(含練習)](https://github.com/AstroHackWeek/AstroHackWeek2019/blob/master/day3_bayes/ahw_intro_incomplete.ipynb) * [Jupyter notebook講義2(含練習)](https://github.com/AstroHackWeek/AstroHackWeek2019/blob/master/day3_bayes/ahw_incomplete.ipynb) ### Deep Learning 101 * [簡報](https://github.com/AstroHackWeek/AstroHackWeek2019/blob/master/day4_bayesiandeep/Deep%20Learning%20101%20AHW.pdf) * [Jupyter notebook講義 - Tutorial Deep 101](https://github.com/AstroHackWeek/AstroHackWeek2019/blob/master/day4_bayesiandeep/_TutorialDeep101_incomplete.ipynb) ([可在Colab中操作運行](https://colab.research.google.com/drive/1DWaS6dCyYkOcJFsoeR8lX87vmx8agu6p)) ### Introduction to Deep Probabilistic Learning * [簡報](https://slides.com/eiffl/tf_proba#/) * [Jupyter notebook講義 - Understanding Regression Loss Functions And Introduction to TensorFlow Probability](https://github.com/AstroHackWeek/AstroHackWeek2019/blob/master/day4_bayesiandeep/UnderstandingLossFunctions_exercise.ipynb) ([可在Colab中操作運行](https://colab.research.google.com/drive/1vS0v_Ta9ih_KDRfoy0LIY6YtY2jukpsJ)) * [Jupyter notebook講義 - Estimating Galaxy Cluster Masses with TensorFlow Probability](https://github.com/AstroHackWeek/AstroHackWeek2019/blob/master/day4_bayesiandeep/TFP_mass_estimate_exercise.ipynb) ([可在Colab中操作運行](https://colab.research.google.com/drive/1bXb1Lobg3Y2Qu_4pU487Hqn_FrydPBEB)) * [Jupyter notebook講義 - Estimating Photometric Redshifts with TensorFlow Probability](https://github.com/AstroHackWeek/AstroHackWeek2019/blob/master/day4_bayesiandeep/photoz_inference_exercise.ipynb) ([可在Colab中操作運行]())
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up