# Introduction
這篇主要是接續前面章節
並且把前面的 $1$ 個變數擴展到 $2$ 個變數
# Discrete Random Variables
**joint pmf** (<font color="#f00">$一起看$</font>)
給定一對 discrete random variables $X,\ Y$
我們可以定義他們的 **joint pmf**
$f(x,\ y) = P(X = x,\ Y = y)$
因此也可以得到 **joint cdf**
$F(x,\ y) = P(X \le x,\ Y \le y)$
舉例來說 : $\begin{cases} X = \{0, 1 \} \\ Y = \{0, 1 \} \end{cases} \Rightarrow \left( X,\ Y \right) = \begin{Bmatrix} (0, 0),\ (0,1), \\ (1,0),\ (1,1) \end{Bmatrix}$
因此在計算 $\underbrace{P ((X,\ Y) = (0,0))}_{ =\ f(0,0)} = P(X = 0,\ Y = 0) = \text{joint pmf at (0, 0)}$
---
**marginal pmf** (<font color="#f00">$分別看$</font>)
給定一對 discrete random variables $X,\ Y$
我們可以定義他們的 **marginal pmf**
$f_X(x) = P(X=x) = \Sigma_y\ P(X = x,\ Y = y) = \Sigma_y\ f(x, y)$
$f_Y(y) = P(Y=y) = \Sigma_x\ P(X = x,\ Y = y) = \Sigma_x\ f(x, y)$
舉例來說 : $\begin{cases} X = \{0, 1 \} \\ Y = \{0, 1 \} \end{cases} \Rightarrow \left( X,\ Y \right) = \begin{Bmatrix} (0, 0),\ (0,1) \\ (1,0),\ (1,1) \end{Bmatrix}$
因此在計算 $f_X(0) = P(X = 0) = P(X = 0,\ Y = 0) + P(X = 0,\ Y = 1) = \Sigma_y\ \underbrace{P(X = 0,\ Y = y)}_{f(0,\ y)}$
---
**conditional pmf** (<font color="#f00">$\text{給定 y or x 值看 x or y}$</font>)
給定一對 discrete random variables $X,\ Y$
並且假設 $f_Y(y) > 0$
我們可以定義他們的 **conditional pmf**
$f_{X|Y}(x|y) = P(X = x| Y =y) = \cfrac{P(X = x,\ Y = y)}{P(Y=y)} = \cfrac{f(x,\ y)}{f_Y(y)}$
舉例來說,我們想看 $y=1$ 時,看 $x$ 的值
$i. \text{所有可能看到的 } x: \{ 0,1 \}$
$ii. \text{每種值有多少機率看到} :$
$\Rightarrow x = 0, f_{X|Y}(0|1) = P(X = 0 | Y = 0) = \cfrac{P(X = 0,\ Y = 1)}{P(Y = 1)} = \cfrac{f(0,1)}{f_Y(1)}$
$\Rightarrow x = 1, f_{X|Y}(1|1) = \ ...... \ = \cfrac{f(1,1)}{f_Y(1)}$
---
::: warning
if $f(x)$ is a pmf :
1. $P(x_1,\ x_2) > 0$
2. $\Sigma_{x_1,\ x_2}P(x_1,\ x_2) = 1$
:::
# Continuous Random Variables
**joint pdf** (<font color="#f00">$一起看$</font>)
需要符合以下條件 :
* $f(x,\ y) \ge 0, \text{ for all } (x,\ y)$
* $\int_{-\infty}^{\infty}\int_{-\infty}^{\infty} \ f(x,\ y) \ dxdy = 1$
* $\text{for any set } A \subset \mathbb{R} \times \mathbb{R},\ P((X,\ Y) \in A) = \int \int_A f(x,\ y) \ dxdy$
舉例來說 :
$F(x,\ y) = P(X \le a,\ Y \le b) = \int_{-\infty}^{a}\int_{-\infty}^{b} \ f(x,\ y) \ dydx$
證明如下 $\Rightarrow$
:::spoiler
$f(x,\ y) \approx \cfrac{P(x \le X \le x + \Delta x,\ y \le Y \le y + \Delta y)}{\Delta x \ \Delta y}$
$\text{又 } P((X,Y) \in A) = \Sigma_x \Sigma_y f(x,\ y) \Delta x \Delta y \stackrel{\Delta x \rightarrow 0 \\ \Delta y \rightarrow 0 }{\approx} \int \int f(x,\ y) \ dxdy$
:::
---
**marginal pdf** (<font color="#f00">$分別看$</font>)
$f_X(x) = \underbrace{\int}_{\text{range of } y} f(x,\ y) dy$
$f_Y(x) = \underbrace{\int}_{\text{range of } x} f(x,\ y) dx$
證明如下 $\Rightarrow$
:::spoiler
$f_Y(y) \approx \cfrac{P(y \le Y \le y + \Delta y)}{\Delta y} \approx \Sigma_{k=0}^{n-1} \underbrace{\cfrac{P(y \le Y \le y + \Delta y,\ x_k \le X \le x_{k+1})}{\Delta y \ \Delta x}}_{= f(x_k,\ y)} \times \Delta x$
$= \Sigma_{k=0}^{n-1}\ f(x_k,\ y) \Delta x \stackrel{\Delta x \rightarrow 0}{\approx} \int_{-\infty}^{\infty} f(x,\ y)dx$
(最後的積分區間可以替換成在給定 $y$ 下, $x$ 可能出現的範圍)
:::
**marginal cdf** (<font color="#f00">$分別看$</font>)
$F_X(x) = P(X \le x) = \int^x_{-\infty} f_X(t)dt = \int^x_{-\infty} \underbrace{\int^{\infty}_{-\infty}}_{\text{range of } y} f(t,\ y) \ dydt$
$F_Y(y) = P(Y \le y) = \int^y_{-\infty} f_Y(t)dt = \int^y_{-\infty} \underbrace{\int^{\infty}_{-\infty}}_{\text{range of } x} f(x,\ t) \ dxdt$
---
**conditional pdf** (<font color="#f00">$\text{給定 y or x 值看 x or y}$</font>)
$f_{X|Y}(x|y) = \cfrac{f(x,\ y)}{f_Y(y)}$
$\text{if } f_Y(y) > 0 \Rightarrow \underbrace{P(X \in A | Y = y)}_{\Downarrow} = \int_A f_{X|Y}(x|y)dx$
$= \cfrac{\int_A f(x,\ y)dx}{f_Y(y)} = \int_A \cfrac{f(x,\ y)}{f_Y(y)}dx = \int_A f_{X|Y}(x|y)dx$
---
:::warning
* **A condition pdf is a pdf** :
$f_{X|Y}(x|y)$
在給定 $Y=y$ 的情況下,看 $x$
1. $f_{X|Y}(x|y) \ge 0$
2. $\int_{-\infty}^{\infty} f_{X|Y}(x|y)dx = 1$
* **A condition pmf is a pmf** :
$f_{X|Y}(x|y)$
在給定 $Y=y$ 的情況下,看 $x$
1. $f_{X|Y}(x|y) \ge 0$
2. $\Sigma_{x} f_{X|Y}(x|y) = 1$
:::
# Examples
## Question 1
**question** : Let $(X,\ Y)$ be uniform on the unit square
**solution** :
* 我們可以發現所有可能看到的值 : $(x,\ y) \in [0,\ 1] \times [0,\ 1]$
* 每個值的可能性 : $\underbrace{f(x,\ y)}_{\text{joint pdf}} = P(X = x,\ Y=y) = \begin{cases} c,\ 0 \le x \le 1,\ 0 \le y \le 1 \\ 0,\ \text{otherwise} \end{cases}$
$\Rightarrow 1 = P((x,\ y) \in \text{unit square}) = \int_0^1 \int_0^1 f(x,\ y) \ dxdy = \int_0^1 \int_0^1 c \ dxdy = c$
* $F(a,\ b) = \underbrace{P(X \le a,\ Y \le b)}_{\begin{cases} 0 \le x \le 1 \\ 0 \le y \le 1 \end{cases}} = \int^b_0 \int^a_0 f(x,\ y) \ dx dy = \int^b_0 \int^a_0 1 \ dx dy = ab$
$\Rightarrow F(x,\ y) = xy,\ \begin{cases} 0 \le x \le 1 \\ 0 \le y \le 1 \end{cases}$
* $P \left( X < \cfrac{1}{3},\ Y > \cfrac{1}{2} \right)$
$\text{第一種解法}= \int_{1/2}^{0} \int_{0}^{1/3} \ f(x,\ y)\ dxdy = \int_{1/2}^{0} \int_{0}^{1/3} \ 1\ dxdy = \cfrac{1}{6}$
$\text{第二種解法}= P \left( X < \cfrac{1}{3},\ Y < 1 \right) - P \left( X < \cfrac{1}{3},\ Y < \cfrac{1}{2} \right) = F \left( \cfrac{1}{3},\ 1 \right) - F \left( \cfrac{1}{3},\ \cfrac{1}{2} \right) = \cfrac{1}{3} - \cfrac{1}{6} = \cfrac{1}{6}$
## Question 2
**question** : Let $(X,\ Y)$ have density $f(x,\ y) = \begin{cases} x + y,\ \text{if } 0 \le x \le 1,\ 0 \le y \le 1 \\ 0 ,\ \text{otherwise} \end{cases}$
**solution** :
* confirm $f$ is a pdf
(i) $f(x,\ y) = x + y \ge 0$
(ii) $\underbrace{P((x,\ y) \in [0,\ 1] \times [0,\ 1])}_{\color{red}{\text{probability}}} \overset{\text{?}}{=} 1$
$= \int^{1}_{0} \int^{1}_{0} \underbrace{f(x,\ y)}_{\color{red}{\text{joint density}}} dxdy = \int^{1}_{0} \int^{1}_{0} (x+y) \ dxdy = 1$
* $P(X < \cfrac{1}{4} | Y = \cfrac{1}{3})$
$\color{red}{=} \int^{\frac{1}{4}}_{0} f_{X|Y}(x \ | \ 1/3) \ dx \color{red}{=} \int^{\frac{1}{4}}_{0} \cfrac{f(x,\ 1/3)}{\color{orange}{f_Y(1/3)}} dx = \int^{\frac{1}{4}}_{0} \cfrac{x + 1/3}{1/3 + 1/2} dx = 1/80$
$\because \color{orange}{f_Y(1/3)} = \int_0^1 f(x,\ y) \ dx = \int^1_0 (x+y) \ dx = y + \cfrac{1}{2},\ 0 \le y \le 1$
## Question 3
**question** : Let $(X,\ Y)$ have density $f(x,\ y) = \begin{cases} cx^2y,\ \text{if }\color{red}{x^2 \le y \le 1} \\ 0 ,\ \text{otherwise} \end{cases}$
**solution** :
我們可以先做出圖形以方便我們觀察

* **Joint Density** : $P(Y \ge \cfrac{3}{4} \ | \ X = \cfrac{1}{2})$
$= \underbrace{\int^{1}_{\frac{3}{4}}}_{\text{需要先 check, 像這裡是 } \\ x = \frac{1}{2} \Rightarrow \frac{1}{4} \le y \le 1} f_{Y|X} \ (y \ | \ \cfrac{1}{2}) \ dy$
$= \int^{1}_{\frac{3}{4}} \cfrac{f(1/2,\ y)}{\color{orange}{f_X(1/2)}} = \int^{1}_{\frac{3}{4}} \ [\cfrac{\frac{21}{4}x^2y}{\frac{21}{8}x^2(1-x^4)}]_{x\text{代入} 1/2} \ dy = \cfrac{7}{15}$
* **Marginal Density** : $\because \color{orange}{f_X(1/2)} = \int_{x^2}^1 \ f(x,\ y) dy = \int_{x^2}^1 \ cx^2y \ dy = \cfrac{c}{2}x^2(1-x^4),\ -1 \le x \le 1$
$(c \text{ 的值下方會算出來})$
* **Joint Probability** : $P\left( (x,\ y) \in \underbrace{A}_{\color{purple}{\text{紫色區域}}} \right) = 1$
$\text{第一種解法}= \underbrace{\int^1_0}_{\text{已知的 } y \text{ range}} \underbrace{\int_{-\sqrt{y}}^{\sqrt{y}}}_{\because y = x^2 \ \Rightarrow \ x = \pm \sqrt{y}} \ f(x,\ y) \ dxdy \ (\color{green}{\text{先切 }y})$
$= \int^1_0 \int_{-\sqrt{y}}^{\sqrt{y}} \ cx^2y \ dxdy = c \cdot \cfrac{4}{21} = 1 \Rightarrow c = \cfrac{21}{4}$
$\text{第二種解法}= \underbrace{\int^1_{-1}}_{\text{已知的 } x \text{ range}} \underbrace{\int_{x^2}^{1}}_{\because y = x^2} \ f(x,\ y) \ dxdy \ (\color{green}{\text{先切 }x})$
* **Probability** : $P(Y < X)$
可以藉由原圖得知我們想要求得的 :

(i) $= \int_0^1 \int_{y}^{\sqrt{y}} \ f(x,\ y) \ dxdy = \int_0^1 \int_{y}^{\sqrt{y}} \cfrac{21}{4}x^2 y \ dxdy \ (\color{green}{\text{先切 }y})$
(ii) $= \int_0^1 \int_{x^2}^{x} \ f(x,\ y) \ dxdy \ (\color{green}{\text{先切 }y})$
## Question 4
**question** : $X \sim UNIF(0,\ 1),\ \text{and } Y|X = x \sim UNIF(x,\ 1)$
**solution** :
* $\text{求 } f_Y(y)$
$\color{red}{=} \int_0^y \ f(x,\ y) \ dx \color{red}{=} \int_0^y f_X(x) \cdot f_{Y|X =x}(y|x) \ dx = \int_0^y 1 \times \cfrac{1}{1-x} \ dx = -ln(1-y),\ 0 \le y \le 1$
* $\because f_X(x) = X \sim UNIF(0,\ 1),\therefore f_X(x) = 1$
* $\because f_{Y|X=x}(y|x) = Y|X = x \sim UNIF(x,\ 1)$
$\Rightarrow f_{Y|X=x}(y|x) = \cfrac{f(x,\ y)}{f_X(x)} = \begin{cases} f_X(x) = 1,\ 0 \le x \le 1 \\ f_{Y|X=x}(y|x) = \cfrac{1}{1-x},\ x \le y \le 1 \end{cases}$
# Important Def or Theorem
* If 2 random variables $X$ and $Y$ are independent $(X \perp\kern-5pt \perp Y)$
$\Rightarrow P(X \in A,\ Y \in B) = P(X \in A) \cdot P(X \in B),\ \text{for every }A,\ B$
簡單來說就是 $\text{joint probability = marginal probabilities 相乘}$
證明如下 $\Rightarrow$
:::spoiler
$P(X \in A | Y \in B_1) = P(X \in A | Y \in B_2) = P(X \in A | Y \in B_3) = P(X \in A)$
$\cfrac{P(X \in A \text{ and } Y \in B)}{P(Y \in B)} = P(X \in A) \Rightarrow P(X \in A \text{ and } Y \in B) = P(X \in A) \times P(Y \in B)$
:::
* Let $(X,\ Y)$ have joint pdf $f_{X,\ Y}(x,\ y) \Rightarrow X \perp\kern-5pt \perp Y$ if and only if $f_{X,\ Y}(x,\ y) = f_X(x)f_Y(y),\ \text{for all x, y}$
證明如下 $\Rightarrow$
:::spoiler
$\color{red}{\underbrace{F(x,\ y)}_{\text{joint CDF}}} = \color{green}{P(X \le x,\ Y \le y)} \overset{\text{ independent 定義 }}{=} P(X \le x)P(Y \le y) = \color{red}{\underbrace{F_X(x)F_Y(y)}_{\text{marginal CDF 相乘}}}$
$\Rightarrow \color{green}{\int_{-\infty}^{y} \int_{-\infty}^{x} f(t,\ s)\ dtds} = \left( \int_{-\infty}^{x} \ f_X(t)dt \right) \left( \int_{-\infty}^{y} \ f_Y(s)ds \right)$
$\overset{\text{ 左右同微分 }}{\Rightarrow} \cfrac{d}{dy}\cfrac{d}{dx} \int_{-\infty}^{y} \int_{-\infty}^{x} f(t,\ s)\ dtds = \cfrac{d}{dy}\cfrac{d}{dx}\left( \int_{-\infty}^{x} \ f_X(t)dt \right) \left( \int_{-\infty}^{y} \ f_Y(s)ds \right)$
$\Rightarrow \color{red}{\underbrace{f(x,\ y)}_{\text{joint density}}} = \color{red}{\underbrace{f_X(x)f_Y(y)}_{\text{marginal densities 相乘}}}$
:::
* if the range of $X$, $Y$ is rectangle, and if $f(x,\ y) =g(x)h(y) \Rightarrow X \perp\kern-5pt \perp Y$
證明如下 $\Rightarrow$
:::spoiler
Let $ag(x)$ be density :
$\int \int g(x)h(x) \ dxdy = \int \int f(x,\ y) \ dxdy = 1$
$\Rightarrow \int \int ag(x) \times \frac{1}{a} h(y) \ dydx = 1$
$\Rightarrow \int ag(x) \times [\int \frac{1}{a} h(y) \ dy] \ dx = 1$
$\Rightarrow [\int \frac{1}{a} \ h(y) \ dy]\underbrace{[\int ag(x) \ dx]}_{\because density \ \therefore =1} = 1$
$\Rightarrow \int \frac{1}{a} h(y) \ dy = 1 \Rightarrow \cfrac{1}{a}h(y) \text{ is a density}$
:::
## Example
let $(X,\ Y)$ have density $f(x,\ y) = \begin{cases} 2e^{-(x+2y)}, \ \text{if } x>0 \text{ and } y>0 \\ 0,\ \text{otherwise} \end{cases} \text{, prove or disprove } X \perp\kern-5pt \perp Y$
標準程序 : 求出 1. $f_X(x)$ 2. $f_Y(y)$ 3. $f_X(x)f_Y(y) = f(x,\ y)$
但 by 上述的 def 可以不需要那麼麻煩
$\Rightarrow f(x,\ y) = 2e^{-x}e^{-2y} \Rightarrow X \perp\kern-5pt \perp Y$