# [DS-ML] Session Brief ## :beginner: Flow of session :small_blue_diamond:Kisine kuch suna hai kya :small_blue_diamond:Why this domain ## Background :::success 1. What is DS, via Venn Diagram 2. What problems do we solve 3. Real life use cases (churn prediction, spam detection) 4. From Data Engineer to Data Science ::: ## :pencil: Where to start from : 1. Basic Analysis of datasets, univariate analysis, bivariate analysis. 2. Implementation of algorithms like Linear Regression, K-means. ### :small_blue_diamond: Planned Sessions & Workshops: 1. Getting started with Data Science 2. Statistical analysis of data 3. Dimensionality Reduction : Why and How 1. Hands on with libraries, EDA 2. Linear Regression 3. Implementing Classification Algorithms ## :book:Resources 1. [Getting Started with Python](https://jovian.com/learn/data-analysis-with-python-zero-to-pandas?enroll=t) 2. [Summer Analytics Course by IIT-CAG](https://www.caciitg.com/sa/course/) 2. [StatQuest](https://www.youtube.com/user/joshstarmer) ## Stuff - [ ] **Start** 1. [Curriculum for beginners](https://towardsdatascience.com/a-complete-data-science-curriculum-for-beginners-825a39915b54) 2. [Data Processing](https://towardsdatascience.com/introduction-to-data-processing-using-descriptive-statistics-and-statistical-charts-in-python-9857a60c481b) 3. [Deep Learning](https://d2l.ai/) **Projects** must have: 1. Data Cleaning 1. Exploratory Data Analysis 1. Data Visualisation **Sample Projects** * Fake News Detection (Natural Language Processing) * Climate Change Impacts on the Global Food Supply * Human Action Recognition (Computer Vision) * Forest Fire Prediction * Road Lane Line Detection (Computer Vision) - **Hackathons** 1. Machinehack 1. DataHack 1. Helmholtz GPU Hackathon 1. Smart India Hackathon 1. Machacks 1. DataCrunchk